Latest results from Borexino

DBD11 Workshop Osaka, Japan 14-17 November, 2011

University of Massachusetts, Amherst (on behalf of the Borexino Collaboration) OF MA

outline

solar neutrinos
Borexino
calibration campaign
recent results
outlook

the full Borexino detector full, May 15 2007

Solar Fusion Reactions

p-p Solar Fusion Chain **CNO Solar Fusion Cycle** $^{12}C + p \rightarrow ^{13}N + \gamma +$ $p + p \rightarrow {}^{2}H + e^{+} + v_{e}$ $p + e^{-} + p \rightarrow {}^{2}H + v_{e}$ $^{13}N \rightarrow ^{13}C + e^+ + v_o$ $^{2}H + p \rightarrow ^{3}He + \gamma$ ¹³C + p \rightarrow ¹⁴N + γ ¹⁴N + p $\rightarrow \frac{15}{1}$ + γ ³He + ³He \rightarrow ⁴He + 2 p | ³He + p \rightarrow ⁴He + e⁺ + ν_{e} $^{15}O \rightarrow ^{15}N + e^+ + v_o$ ³He + ⁴He \rightarrow ⁷Be + γ ¹⁵N + p \rightarrow ¹²C + ⁴He ⁷Be + e⁻ \rightarrow ⁷Li + γ + ν_e ⁷Be + p \rightarrow ⁸B + γ $^{8}B \rightarrow 2\alpha + e^{+} + v_{e}$ ⁷Li + p $\rightarrow \alpha + \alpha$

 $4p \to \text{He}^4 + 2e^+ + 2\nu_e + 26.7 \text{MeV}$

solar neutrino spectrum

BPS08: (Bahcall) Pena-Garay, C., & Serenelli, A. 2008, arXiv:0811.2424 Lower preferred heavy metal content (metallicity) decreased ⁷Be by ~10%. See also A. Serenelli, S. Basu, J. Ferguson, M. Asplund, arXiv:0909.26668v2 Andrea Pocar - DBD11 - November 15, 2011

neutrino oscillations

solar, atmospheric, reactor, beam neutrinos give a nice picture of the oscillation of three active flavors

$$\delta m_{12}^2 \sim 7.6 \times 10^{-5} \text{eV}^2$$
$$\sin^2 \theta_{12} \sim 0.3$$
$$\delta m_{23}^2 \sim 2.4 \times 10^{-3} \text{eV}^2$$
$$\sin^2 \theta_{23} \sim 0.4$$
$$\sin^2 \theta_{13} \sim \text{small}$$

neutrino oscillations are now a firmly established experimental fact

the MSW-LMA solution for solar neutrinos predicts an energy-dependent survival probability for electron neutrinos

Andrea Pocar - DBD11 - November 15, 2011

Borexino science

Solar physics

A spectroscopic measurement of the different solar neutrino rates can verify the Standard Solar Model predictions, rule out accretion scenarios and help determine the core C+N abundance.

Physics of neutrino oscillation

Precision measurements of solar neutrino fluxes can help map out the *transition region*, sensitive to new physics.

Budapest

Milano

Amherst

St. Petersburg

Borexino

(online since May 16, 2007)

Real time measurement of ⁷Be v flux

- Detection reaction: elastic scattering
 - $v + e^- \rightarrow v + e^-$ in liquid scintillator

Cross section for ν_e is ~5 times larger than $\nu_{\mu,\tau}$

- ⁷Be v rate in 100t fiducial mass: 74/d (SSM), 48/d MSW-LMA conversion $v_e \rightarrow v_{\mu,\tau}$
- No directionality, but vertex reconstruction from photon arrival time
- Real time enables observation of possible periodic variations (seasonal, day-night)

Energy spectroscopy (resolution: ~ 5% @ 1 MeV)

- Software threshold set by ¹⁴C at 200 keV (hardware threshold: ~60 keV)
- Neutrino signature: shape of the energy spectrum

Key point: suppression of background sources

Borexino

Designed according to the idea of **graded shielding**:

excellent *shielding* of external background Increasing *purity* from outside to the central region

background reduction: graded shielding design

internal radioactivity

traces of radioisotopes in the scintillator (U,Th,⁴⁰K)

external y rays

from fluid buffer, steel sphere, PMT glass and light concentrators (⁴⁰K,²⁰⁸TI,²¹⁴Bi)

radon emanation

from the PMTs and steel sphere

cosmic muons

and their secondaries

cosmogenics

neutrons and radionuclides from µ spallation and hadronic showers

fast neutrons

from external muons

measurement of the ⁷Be solar neutrino flux

192 live days of data - Phys. Rev. Lett. 101, 091302 (2008)

Rate(⁷Be) = 47 ± 3(stat) ± 4(sys) cpd/100 tons

$$\Phi(^{7}Be) = (5.18 \pm 0.51) \times 10^{9} cm^{-2} s^{-1}$$

 $Rate(o \not s c) = 74 \pm 4 \ cpd/100 tons (high Z)$

calibration sources

	γ						ſ	}	α		n			
	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n +12C	n+Fe
energy (MeV)	0.122	0.165	0.279	0.514	0.834	1.1	1.1, 1.3	1.4	0.15	3.2		2.226	4.94	~7.5
	spiked water vial						spiked scintillator vial		AmBe					

detector calibrations

- position known with ~2 cm accuracy with 7
 CCD cameras mounted on the steel sphere
- external γ source deployed in water tank ('10)

position and energy calibration

data reduction and signal extraction

- A spectral fit is applied including the following signal + all intrinsic background components.
 - ⁷Be, ⁸⁵Kr, ¹⁴C, ¹¹C
 - ²¹⁰Bi (very similar to CNO in this limited energy region)
 - pp, pep, ⁸B, and CNO neutrinos fixed at SSM-LMA value
- Fit with and without statistical subtraction of ²¹⁰Po events, based on α/β pulse shape discrimination.
- Two independent methods (MC based and analytical) were applied.

⁷Be solar neutrino flux in Borexino

First measurement: 192 days [PRL 101 091302 (2008)]

Rate $_{7Be} = 49 \pm 3(stat) \pm 4 (sys)$ events/day/100 ton

New results [PRL 107 141302 (2011)]

Rate $_{7Be} = 46 \pm 1.5$ (stat) $^{+1.5}_{-1.6}$ (sys) events/ day / 100 ton

- Increased statistics (about x4 times)
- Lower systematic errors (calibration campaign)
- ➡ <5% total uncertainty</p>

Scenario	Expected rate (events / day / 100 ton)
No oscillations	74 ± 5 rejected at 5 σ
BPS07(GS98) - High metallicity	48 ± 4
BPS07(AGS05) - Low metallicity	44 ± 4

- Different fits:
- with and without alpha subtraction
- Monte Carlo vs analytical
- energy scale and resolution
- removed muons, Radon delayed coincidences
- ²¹⁰Bi, ⁸⁵Kr, ¹¹C are free parameters
- pp, pep, CNO rates fixed

⁷ Be ν	46.0 ± 1.5 (stat) ^{+1.5} _{-1.6} (sys)
⁸⁵ Kr	31.2 ± 1.7 (stat) ± 4.7 (sys)
²¹⁰ Bi	41.0 ± 1.5 (stat) ± 2.3 (sys)
¹¹ C	28.5 ± 0.2 (stat) ± 0.7 (sys)

Borexino systematics

First measurement: 192 days [PRL 101 (2008) 091302]

New results [PRL 107 141302 (2011)]

Source	Uncertainty (%)		
Total scintillator mass	0.2		
Fiducial mass ratio	6.0		
Live Time	0.1		
Detector response function	6.0		
Cuts efficiency	0.3		
Total Systematic Error	8.5		

Source	Uncertainty (%)
Scintillator density	0.05
Fiducial volume	+0.5 -1.3
Live Time	0.04
Optical response	2.7
Cuts efficiency	0.1
Fit methods	2.0
Trigger efficiency, stability	<0.1
Total Systematic Error	+3.4 -3.6

Implication on solar physics

• Metallicity controversy Fit to the available all solar neutrino data leaving free f_{Be} and f_B (f = $\Phi/\Phi(SSM)$)

Hard to discriminate

• Other solar neutrino sources ^{0.7}/_{0.7} 0.8 0.9 1.0 1.1 Each solar neutrino flux can be calculated ^{fBo} with solar luminosity constraint. M.C.Gonzalez-Garcia, M.Martoni, J.Salvado JHEP 05(2010)072 / 0910.4584

$$\Phi_{pp} = (6.06^{+0.02}_{-0.06}) \times 10^{10} \text{cm}^{-2} \text{s}^{-1} (f_{pp} = 1.013)$$

$$\Phi_{CNO} < 1.3 \times 10^{9} \text{cm}^{-2} \text{s}^{-1} (f_{CNO} < 2.5) \text{ at } 95\% \text{C.L.}$$

Pee survival probability (862 keV)

un-oscillated 862 keV v_e flux: (2.78 ± 0.13) x 10⁹ cm⁻²s⁻¹ [(3.10 ± 0.15) x 10⁹ cm⁻²s⁻¹ total] with the MSW-LMA solution, the absolute ⁷Be v_e flux is: (4.84 ± 0.24) x 10⁹ cm⁻²s⁻¹ Ratio of the Borexino measurement to the SSM prediction is $f_{Be} = 0.97 \pm 0.09$

matter effects of neutrinos crossing the earth could enhance the night rate by regeneration of electron neutrinos

$$A_{dn} = 2 \ \frac{R_N - R_D}{R_N + R_D}$$

depends on: oscillation parameters and neutrino energy

Source	A _{dn} error		
Live-time	< 5 x 10 ⁻⁴		
Cut efficiency	0.001		
²¹⁰ Bi time variation	± 0.005		
Fit procedure	± 0.005		
Sys error	0.007		

 $A_{dn} = 0.001 \pm 0.012 \ (stat) \pm 0.007 \ (syst)$

effect on neutrino oscillations

⁸B solar neutrinos at low threshold

 $R(^{8}B) = 0.22 \pm 0.04 \ (stat) \pm 0.01 \ (syst) \ \text{cpd}/100 \ t$

First measurement of P_{ee} in vacuum (⁷Be v) and matter-enhanced regime (⁸B v) in the same detector

$$P_{ee} = 0.29 \pm 0.10$$

TABLE IV. Systematic errors.						
Source	E > 3	MeV	E > 5 MeV			
	σ_+	σ_{-}	σ_+	σ_{-}		
Energy threshold	3.6%	3.2%	6.1%	4.8%		
Fiducial mass	3.8%	3.8%	3.8%	3.8%		
Energy resolution	0.0%	2.5%	0.0%	3.0%		
Total	5.2%	5.6%	7.2%	6.8%		

Phys Rev D 82, 0330006 (2010)

pep and CNO solar neutrinos ?

1. Scientifically desirable

+ *pep* rate is closely connected with *pp* rate (low energy, mostly obscured by ¹⁴C), first fusion step in the sun

+ CNO flux has large theoretical uncertainty (30%) depending on unknown factors of the solar chemical composition (metallicity of the mantle)

2. Hard to detect

+ the expected *pep* and CNO solar
neutrino rates are 5-10 times smaller than
⁷Be, which obscures most of their
spectrum

+ ²¹⁰Bi, ⁴⁰K and ²⁰⁸Tl (²³²Th) backgrounds

3.¹¹C subtraction

+ when a muon produces a ¹¹C, simulations suggest that a free neutron is also emitted ~95% of the times, allowing for event-by-event subtraction

+ investigating statistical subtraction

pep and CNO neutrinos

The 125 muon-neutron coincidences/day can be vetoed without excessive loss of live time by a 3-fold coincidence rejection

Andrea Pocar - DBD11 - November 15, 2011

pep and CNO neutrinos

The 125 muon-neutron coincidences/day can be vetoed without excessive loss of live time by a 3-fold coincidence rejection

Andrea Pocar - DBD11 - November 15, 2011

3-fold coincidence results (not only)

remove 91% of background sacrificing 51.5% of live time

3-fold coincidence results (not only)

remove 91% of background sacrificing 51.5% of live time

50% of β^+ decays produce ortho-positronium (t_{1/2}=3 ns):

- time shift
- multi-site (gammas)
- ionization density profile

electron/positron pulse shape discrimination

Pulse shape parameter distribution in 0.9 - 1.8 MeV

- binned likelihood fits in energy, radius and BDT
- 2D energy/radius and energy/BDT pdf's
- simultaneous fits to TCF-accepted and rejected events (double bg statistics)

use boosted decision tree (BDT) to optimize discrimination

- train, test, build PDF with events selected by TFC

- include BDT variable in signal extraction

pep and CNO results

CNO v rate / counts/(dayx100ton)

Andrea Pocar - DBD11 - November 15, 2011

pep v rate / counts/(dayx100ton)

pep and CNO results

Borexino *pep* counting rate: $3.1 \pm 0.6_{stat} \pm 0.3_{sys}$ /(d 100T)

 $P_{ee}(1.44 \text{ MeV}) = 0.62 \pm 0.17$

 Φ_{pep} = 0 disfavoured at 98% C.L.

Borexino CNO counting rate: < 7.9 (<7.1_{stat only}) /(d 100T) (95% C.L)

(< 1.5 x high Z SSM)

outlook

Scintillator purification

Operations to further purify the scintillator ongoing since July 2010

- no sign of ⁸⁵Kr since January 2011
- moderate reduction in ²¹⁰Bi
- operations continue targeting ²¹⁰Bi (and maybe ²¹⁰Po)

Physics

Borexino will operate for 3 or more years

- neutrino "snapshot" of entire solar neutrino spectrum
- CNO, pp?
- better statistics for ⁸B, pep, geo-neutrinos
- supernovae neutrinos
- exotica

summary

- Borexino has achieved its original design goal
- precision 7Be measurements improves experimental constraint at low energy
- day/night improves solar only constraint on mixing parameters
- first evidence of pep flux
- attempt at measuring CNO, pep fluxes
 - supernovae, geo-neutrinos, superluminal neutrinos, other exotic physics

summary

- Borexino has achieved its original design goal
- precision 7Be measurements improves experimental constraint at low energy
- day/night improves solar only constraint on mixing parameters
- first evidence of pep flux
- attempt at measuring CNO, pep fluxes
 - supernovae, geo-neutrinos, superluminal neutrinos, other exotic physics