

Inelastic neutron scattering and background in double beta decay

Steve Elliott

Neutron-Related Backgrounds

- The Majorana Demonstrator uses Ge, Cu and Pb as its 3 largest material components. GERDA uses lots of Ar (also related to our dark matter program.
- Need to measure:
 - A(n,X)A' cross sections
 - Detector Activation (MJD
 - (n,n' γ) cross sections

LANSCE/WNR

Broad spectrum pulsed neutron beam at LANL

800 MeV proton LINAC: Neutrons produced via spallation on a tungsten target

In-beam neutron flux measurement made with ²³⁸U/²³⁵U fission chamber

GEANIE (Germanium Array for Neutron Induced Excitations)

•20 BGO suppressed HPGe detectors 13 coaxial ($E_{\gamma} < 4 \text{ MeV}$) 2.2 keV at E_{γ} =1332 keV 15 ns FWHM 7 planar (E_{γ} < 1 MeV) 0.9 keV at E_{γ} =122 keV 10s ns FWHM ĊР BEAM Roll Out Door F,G R K 👝 L.M

Coax

Planar

S.R. Elliott, DBD workshop

Enriched Ge activation

11/16/11

S.R. Elliott, DBD workshop

enrGe Results (atoms/kg-d) (Phys Rev C 82 054610 (2010)

Isotope	Ref. [14]	Ref. [15]	Ref. [22]	Ref. [20]	Ref. [16]	Ref. [23]	Ref. [21]	This work
⁵⁷ Co	0.1	1.0	1.6		2.3	2.9	6.7	0.7 ± 0.4
⁵⁴ Mn		1.4	2.3		5.4	2.2	0.87	2.0 ± 1.0
⁶⁸ Ge	1.2	1.2		5.7	13	7.6	7.2	2.1 ± 0.4
⁶⁵ Zn	6.0	6.4	11.0		24	10.4	20.0	8.9 ± 2.5
⁶⁰ Co	3.5			3.3	6.7	2.4	1.6	2.5 ± 1.2

[14] H. S. Miley, F. Avignone, R. Brodzinski, W. Hensley, and J. Reeves, Nucl. Phys. B (Proc. Suppl.) 28A, 212 (1992).

[15] F. T. III. Avignone et al., Nucl. Phys. B (Proc. Suppl) 28A, 280 (1992).

[22] A. Balysh *et al., in Proceedings of the XXVIIth Rencontre de Moriond Progress in Atomic Physics Neutrinos and Gravitation* (Editions Frontieres, Singapore, 1992), p. 177.

[20] I. Barabanov, et al., Nucl. Instrum. Meth.B 251, 115120 (2006).

[16] S. Cebrian et al., Journal of Physics: Conference Series 39, 344346 (2006), TAUP 2005: Proc. Ninth Int. Conf. on Topics in Astroparticle and Underground Physics.

[23] J. Back and Y. Ramachers, Nucl. Instrum. Meth. A 586, 286 (2008).

[21] D.-M. Mei, Z.-B. Yin, and S. R. Elliott, Astropart. Phys. 31, 417420 (2009), arXiv:0903.2273

Pb Activation

Pb activation (presence of long-lived nuclides) previously unknown Pb irradiated at 4FP60R (GEANIE) in 2003 and 2006 Counted on low background detector at WIPP

TALYS production cross section

Results - Preliminary

lsotope	Meas. Rate	TALYS
¹⁹⁴ Au (via ¹⁹⁴ Hg)	7.1 ± 1.1 atoms/kg-d	16
²⁰² Tl (via ²⁰¹ Pb)	26 ± 6	77
²⁰⁷ Bi	0.14 ± 0.03	N/A

Au and Bi both have high Q values. Could be $\beta\beta$ background for Ge.

Surface exposures of less than 35 years result in negligible background.

Detector Activation

Ice House beam similar to cosmic ray spectrum. Produces cosmogenic isotopes in detector. Want to show that external calibrations acurately describe internal decays.

Single Site Events

Identified a nearly pure sample of SSE, β^+ events in detector triple-coincidence data (tagging 511-keV annihilation gammas externally. ⁶⁸Ge is critical background in Ge experiments.

Results

- The Semi-coax PSA work has come to a conclusion!
 - A systematic error of ~-15% observed in SSE survival probability compared to expectation (moment-based PSA).
 - Attributable to bias in DEP event location.
 - PPC PSA methods should not be susceptible to this bias
- About 100 days of BEGe 7-detector array data collected, more on the way.

Energy dependent spectra

(n,n') Program

•Few measurements in ββ critical region.
•Cross sections set to zero when no measurements available.
•Forces reliance on models – great variance in agreement with data, and uses only statistical photon emission; not state specific decays.

13

Ar(n,n' γ) in Ge ROI

3100 3120 3140 3160

⁴⁰Ar + n E_n > 10 MeV Comuts 300 ղլենն 150 L Energy [keV] ⁴⁰Ar + n E_n > 10 MeV st 140 120

2960 2980 3000 3020 3040 3060 3080

Energy [keV]

We have searched for such dangerous lines in many $\beta\beta$ isotopes.

	Cross Section [mb]			
$E_n [\text{MeV}]$	${ m E}_{\gamma}=2039~{ m keV}$	${ m E}_{\gamma}=3061~{ m keV}$		
1.58 - 3.98	< 0.22	< 0.21		
3.98 - 10.0	< 1.12	< 1.10		
10.0 - 25.1	< 4.09	< 4.84		
25.1 - 50.0	< 9.90	< 11.1		
50.0 - 100	< 15.3	< 16.3		

$Pb(n,n'\gamma)$ Measurements

Pb(n,n'γ) near ROI

Neutron energy		Cross section (mb)					
(MeV)	-	nal	4 Pb $(n, xn\gamma)^{206}$ Pb 2041 keV	^{nat} Pb(30	$(n, xn\gamma)^{207, 208}$ Pb 61,3062 keV		
2.87-4.20		0.72 ± 0	$0.44(\text{stat.}) \pm 0.07$ (syst.)	<0.3		
4.20-6.72		4.0 ± 0	$0.6 (\text{stat.}) \pm 0.4 (\text{sy})$	st.) 3.0 ± 0.5	3.0 ± 0.5 (stat.) ± 0.3 (syst.)		
6.72-12.50		3.6 ± 0	$0.7 (\text{stat.}) \pm 0.3 (\text{sy})$	st.) 3.9 ± 0.8	3.9 ± 0.8 (stat.) ± 0.4 (syst.)		
12.50-31.15		3.3 ± 0	$0.6 (\text{stat.}) \pm 0.3 (\text{sy})$	st.)	<0.4		
31.15-200		0.50 ± 0	$0.17 \text{ (stat.)} \pm 0.05 \text{ (stat.)}$	(syst.)	<0.2		
$\beta\beta$ isotope	tope $Q_{\beta\beta}$ (keV)		γ ray	SEP	DEP		
⁷⁶ Ge	2039.00 ± 0	0.05 ²⁰	${}^{6}\text{Pb}\sigma = 3.6 \pm 0.8 \text{ mb}$		207,208 Pb $\sigma = 3.9 \pm 0.9$ mb		
⁸² Se	2995.5 ± 1	1.9			208 Pb σ NA		
00 Mo 3034.40 ± 0.17		0.17	208 Pb $\sigma < 0.4$ mb	206 Pb $\sigma = 2.7 \pm 0.6$ mb	²⁰⁶ Pb σ NA		
¹¹⁶ Cd	Cd 2809 ± 4			$\sigma = 0.69 \pm 0.49 \text{ mb}$			
¹³⁰ Te	2530.3 ± 2	2.0	207.209	²⁰⁸ Pb $\sigma < 0.4$ mb			
¹³⁶ Xe	2457.83 ± 0	0.37	$\sigma < 0.3 \text{ mb}$		207		
¹⁵⁰ Nd	3367.7 ± 2	2.2			207 Pb σ NA		

Cu(n,n'y) Measurements

Comparison of partial γ -ray production cross section for 2081-keV state in ⁶³Cu Section [mb] with the ENDF/B-VII evaluation for this state. Based on this measurement, the ENDF/B-VII significantly over predicts the peak cross section. Feeding from higherlying states are responsible for the high energy strength. The integrated cross section is 67% higher than the ENDF/B-VI evaluation. In the evaluation there are no higher lying states, and therefore feeding of this level will only be taken into account by states considered in the statistical model. This state lies in the vicinity of the ⁷⁶Ge endpoint.

Summary of Measurements

- Pb(n,n'γ) published
- Cu(n,n'γ) Paper just about ready
- CZT(n,n' γ) still in analysis
- $e^{nr}Ge(n,n'\gamma)$ still in analysis
- $Ar(n,n'\gamma)$ Paper just about ready
- Ne(n,n'γ) proposed for this year
- enrGe(n,X)⁶⁸Ge, Cosmogenic activation published
- Pb(n,X)A, Cosmogenic activation Paper just about ready
- Zn,Nb,Zr,Cd(n,X)A, Cosmogenic activation measurements in progress
- ^{nat}Ge[HPGe](n,X)⁶⁸Ge, Cosmogenic activation
 - Semi coax Paper just about ready
 - BEGe measurements in progress

Collaborators

- enrGe(n,X): S.R. Elliott, V.E. Guiseppe, B. LaRoque, R. Johnson, S. Mashnik
- Pb(n,X): V.E. Guiseppe, S.R. Elliott, N. Fields, D. Hixon
- Activated Detectors: D. Steele, S.R. Elliott, V.M. Gehman, V.E. Guiseppe
- Ar(n,n'γ): S. MacMullin, M. Boswell, S. Elliott, V. Guiseppe, R. Henning, B. LaRoque, M. Devlin, N. Fotiades, R. Nelson, J O'Donnell
- Pb(n,n'γ): V. E. Guiseppe, M. Devlin, S. R. Elliott, N. Fotiades, A. Hime, D.-M. Mei, R. O. Nelson, D. V. Perepelitsa
- Cu(n,n'γ): M.S. Boswell, S.R. Elliott, D.V. Perepelitsa, M. Devlin, N. Fotiades, R.O. Nelson, V.E. Guiseppe