The neutrino reaction on ⁷¹Ga: new measurement of the neutrino response of ⁷¹Ge from terrestrial neutrinos and of the ⁷¹Ge EC Q-value

PI's: D. Frekers, H. Ejiri, V.N. Gavrin, M.N. Harakeh, J. Dilling

Annika Lennarz

16. November 2011

Reviewing the issue

Neutrino flux measured via the 71 Ga (ν_e, e^-) ⁷¹Ge-reaction

- ▶ expected rate after the SSM: ≈ 132 SNU
- detected rate (GALLEX/GNO): 67.6±4.0 (stat.) SNU
- detected rate (SAGE): $65.4^{+3.1}_{-3.0}$ SNU

Calibration with 51 Cr (37 Ar) terrestrial ν -sources (EC-decay)

\mathbf{E}_{ν} [keV]	transition	BR
747.3	$\mbox{K-EC} \rightarrow {}^{51}\mbox{V}$ g.s.	81.6 %
752.1	L-EC \rightarrow ^{51}V g.s.	8.5~%
427.1	$\text{K-EC} \rightarrow {}^{51}\text{V}^*$ (320)	8.95~%
432.0	$L\text{-}EC \rightarrow {}^{51}V^* \ \text{(320)}$	0.9 %

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

exp.	source	ratio
GALLEX	⁵¹ Cr-1	0.95 ± 0.11
GALLEX	⁵¹ Cr-2	0.81 ± 0.11
SAGE	⁵¹ Cr	0.95 ± 0.12
SAGE	³⁷ Ar	0.79 ± 0.10
Average	⁵¹ Cr, ³⁷ Ar	0.87 ± 0.05

- ratio: # of measured ⁷¹Ge atoms normalized to # of calculated atoms
- average value $\approx 2.5\sigma$ away from unity

- Origin of this discrepancy?!
- Iower detector efficiencies?
- ▶ neutrino cross section?
- unknown properties of neutrinos?

Bahcall: Contribution from excited states: 5.1 %
$$\sigma \left({}^{51}\mathrm{Cr} - \nu \right) = \sigma_0 \left({}^{51}\mathrm{Cr} - \nu \right) \left[1 + \underbrace{0.669 \underbrace{\frac{B_1 \left(GT \right)}{B_0 \left(GT \right)}}_{0.028} + \underbrace{0.221 \underbrace{\frac{B_2 \left(GT \right)}{B_0 \left(GT \right)}}_{0.146}}_{5.1\%} \right]$$

Extracting the B(GT)-strength via the 71 Ga $({}^{3}$ He,t) 71 Ge-reaction @ RCNP

Results

Contribution from the excited states: 7.2 ± 2.0 %

- $\blacktriangleright~175$ keV: 2.7 $\pm~2.0~\%$
- $\blacktriangleright~500~keV: 4.5\pm0.35~\%$

as opposed to 5.1 % taken by Bahcall

- discrepancy confirmed/slightly increased
- Contributions from the excited states do NOT resolve the discrepancy
 - \Rightarrow What else could contribute?
- What about the Q_{EC} value of ⁷¹Ge?

$$\sigma_0 \left({^{51}{
m Cr}}
ight) = {\it F}({\it atom}) \cdot rac{1}{ft} \ ft \propto Q_{
m EC}^2 \cdot t_{1/2}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How was the **Q**_{EC}-value measured before??

All measurements in context of 17 keV ν ! EC is accompanied by (IB)-photon (1/10⁴)

- 1. End-point spectrum is sensitive to neutrino mass
- 2. Q-value is determined by end-point energy $\Rightarrow \mathbf{Q}_{EC}$ only side effect!
 - \Rightarrow **Q**_{EC} only side effect

PROBLEMS:

- 1. Extremely strong sources needed ($\approx 10^{10}$ 10^{11} Bq; (n, $\gamma)$ activation)
- 2. Use of external source \Rightarrow atomic excitations on the end-point energy!
- 3. Pile-up issues
- 4. background issues after activation??
- 5. detector efficiencies need to be known precisely!

⁷¹Ge Q_{EC}-value by Lee et al. (1995)

None of the internal bremsstrahlungs (IB)-EC expmts. were

aimed at a precise determination of the Q_{EC}-value!!

 \mathbf{Q}_{EC} -value: **232.65** \pm **0.15** keV

=

Dac

⁷¹Ge Q_{EC}-value by DiGrigorio et al. (1993)

effect of atomic excitations on the end-point energy??

> \mathbf{Q}_{EC} -value: 232.1 \pm 0.1 keV

⁷¹Ge Q_{EC}-value by Zlimen et al. (1991)

Also search for 17 keV ν with report of 17 keV ν \Rightarrow unreasonable error/calculation unclear

 \mathbf{Q}_{EC} -value: $\mathbf{229.0} \pm \mathbf{0.5 \ keV}$

(日本)

⁷¹Ge Q_{EC} -value measurement at TRIUMF's TITAN experiment - **New approach:** mass measurement via cyclotron frequencies

- Trap experiment
- ► radioactive beam of ⁷¹Ge
- mass measurement of ⁷¹Ge and ⁷¹Ga via cyclotron frequencies

(日) (日) (日) (日) (日) (日) (日) (日)

TITAN - TRIUMF's Ion Trap for Atomic and Nuclear science

- 1. Radioactive beam provided by ISAC
- 2. Transfer to EBIT (Charge breeding - creating highly charged ions)
- 3. Transfer to Penning trap (frequency determination via TOF measurement)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Principle of mass measurement with Penning Trap

- 1. Single ion injection
- 2. Confinement by B-field + electrostatic quadrupole field
- 3. Lorentz force \Rightarrow oscillation with cyclotron frequency
- 4. Trap opening & transfer of energy to E_{kin} ⇒ TOF-measurement

ions oscillate with cyclotron frequency:

$$\nu_c = \frac{1}{2\pi} \frac{q}{m} \cdot B$$

- ► Precision: $\frac{\delta m}{m} \approx \frac{m}{q \cdot B \cdot T_{RF} \sqrt{N}}$ (T_{RF} : Excitation time)
- $\begin{array}{l} \Rightarrow \mbox{Precision increases with} \\ \mbox{charge state} & \mbox{and number of} \\ \mbox{measurements} \\ \mbox{CAVEAT:} & \mbox{HCI} \Rightarrow \mbox{increase of} \\ \mbox{systematic effects:} \end{array}$
 - 1. HCI's interact with residual gas; i.e. increased damping
 - 2. ion-ion interaction (when more than 1 ion in trap)

EBIT - Electron-Beam Ion Trap

produces and traps highly charges ions (HCI's) using a high-current electron beam

- e⁻-gun, trap center, e⁻-collector
- injected ions are accelerated towards trap center & compressed by B-field
- radial confinement by e⁻ beam space charge
- ► Ionisation by intense e⁻ beam (500mA)
- ► Ions are captured deeper in trap potential with every loss of e⁻

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Novel approach: Production of ⁷¹Ga and radioactive ⁷¹Ge

- ► Ta-target + 50 μ A, 500 MeV proton beam ⇒ produce ⁷¹Ga/⁷¹Ge production rate ≈ 10⁷ - 10⁸ p/s
- ▶ beam 1: surface ionized ⁷¹Ga $(\approx 10^7 \text{ p/s})$
- ▶ beam 2: surface ionized ⁷¹Ga + laser ionized ⁷¹Ge (≈ 10⁶ p/s)
- ► Beam transport to EBIT
- ▶ Charge breeding to **neon-like** charge states
 ⇒ beam 1: Ga²¹⁺
 ⇒ beam 2: two species: Ga²¹⁺ and Ge²²⁺
- ► high purity and high isobaric mass separation due to HCI's
- ► assurance of single ion injection (minimize ion-ion interaction) into MPET

Typical TOF-resonances for ⁷¹Ga and ⁷¹Ge

Excitation frequency versus the TOF

Minimum of the resonance corresponds to the **cyclotron frequency**

◆ロト ◆屈 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の Q ()

Calculation of atomic mass excess \Rightarrow **Q**_{EC}-value

$$m_1 = \frac{q_1}{q_2} \cdot \frac{\nu_2}{\nu_1} \cdot m_2$$

- ► stable nucleus (⁷¹Ga) as reference (m₂)
- ► ⇒ mass measurement of 71 Ge (m_1)
- accounting for ionisation energies of each species
- additional calculations with other references (also highly charged)

Double resonance

Independent measurement of

 \mathbf{Q}_{EC} -value with two species trapped at the same time

- ► additional effect: ion-ion interaction of 2 species
- resonance-resonance interaction
- increased damping
- Effect on Q-value?
- $\blacktriangleright \Rightarrow Further investigation$

ロトメポトメラトメラト

590

Systematic studies requiring further investigation

- 1. effect of excitation time (up to 156 ms) on charge exchange and frequency
- 2. effect of resonance damping (caused by charge exchange with residual gas)
- 3. ion-ion interaction
- 4. effect of Lorentz steering
- 5. calibration: study of well known (few eV) reference masses
 - (i.e. ${}^{16}O^{5+}$, ${}^{84}Kr^{25+,26+}$, N^{4+})
- 6. relativistic q/m shift due to magnetic field

 \Rightarrow attempt to reduce systematic error and study of systematics

Consequences of Q_{EC} -value measurement

 $\begin{array}{l} \textit{ft} \propto Q_{\rm EC}^2 \cdot \textit{t}_{1/2} \\ \text{F.i.: If } Q_{\textit{EC}} \text{ is } \approx 1 \text{ keV higher} \Rightarrow \textit{ft-value} \approx 1\% \text{ higher} \\ \Rightarrow \textit{phase space factor for } B_2(\text{GT}) \approx 14\% \text{ lower} \Rightarrow \sigma_0 \left({}^{51}\text{Cr} - \nu \right) \\ \text{slightly reduced} \Rightarrow \textbf{Only slightly reduced discrepancy} \end{array}$

Conclusion

nuclear physics aspect of the neutrino cross section has been investigated with high precision

- 1. contribution from excited states: 7.2 % \pm 2.0 % (5.1 % by Bahcall) \Rightarrow slightly amplifies the discrepancy
- 2. Q_{EC} will be close to the value employed by Bahcall & reduces @ most contrib. from exct. states from 7.2 % to 6.5 %
- 3. new calculations of phase space factors required

the observed discrepancy is **NOT** due to any unknowns in Nuclear Physics!!

Acknowledgements

MANY THANKS TO:

- ► RCNP facility and members
- ► D. Frekers
- H. Ejiri
- H. Akimune
- T. Adachi
- B. Bilgier
- B.A. Brown
- B.T. Cleveland
- H. Fujita
- Y. Fujita
- M. Fujiwara
- ► E. Ganioglu
- V. N. Gavrin
- ► E.-W. Grewe
- ► C.J. Guess
- M.N. Harakeh

- K. Hatanaka
- R. Hodak
- C. Iwamoto
- N.T. Khai
- H.C. Kozer
- A. Okamoto
- H. Okamura
- P.P. Povinec
- P. Puppe
- ► F. Simkovic
- ► G. Ssoy
- T. Suzuki
- A. Tamii
- ► J.H. Thies
- ▶ J. Van de Walle
- R.G.T. Zegers

Acknowledgements

Many thanks to the TITAN group at TRIUMF

Thank you for your attention!

attachments - ⁷¹Ge half life by Hampel

