The NEXT experiment

J.J. Gomez Cadenas Instituto de Física Corpuscular (CSIC & UVEG) On behalf of the NEXT collaboration

DBD11 — November 2011

jueves 17 de noviembre de 2011

NEXT Collaboration

U. Girona • IFIC (Valencia) • U. Santiago de Compostela
U. Politécnica Valencia • U. Zaragoza• U. A. Madrid

LBNL • Texas A&M• John Hopkins

CEA (Saclay)

U. Coimbra • U. Aveiro

JINR (Dubna)

NEXT concept

Energy resolution

Topological signature

Energy resolution in HPXe

- Intrinsic resolution (Fano factor) at $Q_{\beta\beta}$ (2458 keV): 3×10⁻³ FWHM.
- Achieved in NEXT large prototypes: 5×10^{-3} FWHM.
- NEXT target: 0.5% FWHM appears feasible.

Energy resolution

Energy resolution of 1 % FWHM at 662 keV measured by NEXT-DBDM

Full energy spectrum for a Cs-137 calibration source. Resolution is quite stable against pressure, drift field (0.3-2 kV/cm) and EL (2.0-3.5 kV/cm bar), but careful calibration and monitoring needed.

Tracking in HPXe

Electrons travel on average ~15 cm each. Clear topological signature. Electrons behave as MIPs except near the endpoints (*blobs*).

Topological signature

Tracks reconstructed at 662 keV by NEXT-DEMO

Single blobs clearly visible at the end of the track

- Cylindrical TPC filled with highly enriched (>90%) ¹³⁶Xe gas at 15 bar pressure.
- TPC walls lined with material highly reflective.
- Signals read by photosensors
- Baseline detector with ~100-150 kg mass (2 m³): NEXT-100.

2.00	0.0.0.0 0.0-0.0 0.0-0.0	2 2 2 9	8.0.0		
0.0 0.0	0.0.0.0 0.0.0.0 0.0.0.0	9.5 2.9		9.9.9.9	
0.0 0.0		0.0000	0.0.0	0.0.8.8.8	
10.0	0 0 0 0 0 0 0 0	0 0 0			***
-		000	-	25.6	2

- A ¹³⁶Xe isotope decays emitting the two electrons.
- They propagate through the HPXe ionizing and exciting its atoms.

- Prompt primary scintillation light emission in VUV (~175 nm). About 100 eV needed to create a primary scintillation photon.
- Detect faint signal via sensitive photo-detectors (PMTs) behind transparent cathode.
- Determine t₀ and therefore event position along drift.

- Create ionization charge in Xe: ~25 eV to create one electron-ion pair.
- Electrons drift toward anode with velocity ~1 mm/us in a ~0.5 kV/cm electric drift.
- At 10 bar pressure, non-negligible diffusion: 9 mm/√m transverse, 4 mm/√m longitudinal).

- Additional grid in front of anode creates ~0.5 mm thick region of more intense field: E/p ~4 kV/cm/bar.
- Secondary scintillation light (electroluminescence) created in between grids by atomic de-excitation, with very linear gain of order 10³ and over a ~2us interval.
- Finely segmented photo-detector plane (MPPCs) just behind anode performs "tracking".

jueves 17 de noviembre de 2011

- Electroluminescence, emitted isotropically, also reaches cathode.
- Same array of photo-detectors used for t₀ measurement is also used for accurate calorimetry.

Backgrounds

- The only relevant background for NEXT are gammas from Bi-214 and TI-208.
- 3D reconstruction of event suppresses most background events including identification of 30 keV X-rays from Xe de-excitation.

The Xe landscape

- Bi-214 line very close to Xe Qbb.
- Energy resolution (and radiopurity) are essential to separate signal from background.
- But extra handles become a must

Topological signature

Monte Carlo bkgnd event from Bi-214

Topological signature

NEXT-DEMO event from Na-22 with X-ray

EXTREME BLOB CUT

* Good rejection factor (1/10) with very high signal efficiency (>80%)

* Or higher rejection factors (1/50 or better) at higher efficiency cost (50% or lower)

Prototypes

EL prototypes

NEXT-DBDM Energy resolution in HPXe Possible application to DM searches

NEXT-DEMO NEXT detector concept

Very clean waveforms. Both scintillation (S1) and ionization (S2) signals clearly visible.

Analysis corrections

Long electron lifetime (>4 ms) in the gas.

Radial dependence (solid angle) of collected light easily corrected.

Energy resolution of 1 % FWHM at 662 keV!

Full energy spectrum for a Cs-137 calibration source. Data taken at 15 bar, drift field of 0.7 kV/cm and EL gain of 2 kV/cm/bar.

 Mesh grids with 88% optical open area (gate and anode)

Field Cage Breakdown – PMT Plane

100 400 400 400 to allo allo allo of H other 0110 a110 400 000 000 000 1.27 0.0 0.00 7.00 COLD CLUD 10.0 0.3 0 130 0 allo della alls allo allo (1)0 a(1)0 a(1) a the state state state 1.5 010 015 015 d THE OWNER OF a o a o a o D all all all all 07D 03 D 010 010 010 G 12 GIGD CDD CD 0.00 0.0 0.0 0.0 acts allo ad CE. 0.0 0.0 0.0 D O O O O O O DED OF 310 010 0.0 0.0 0.00 0.00 0.00

S1, S2 and S2 due to X ray clearly visible

Reconstructed electrons from Cs-137 source.

NEXT-100

HV

HVFT Design

Tell-tale port

jueves 17 de noviembre de 2011

EL Grids

e.g. LUX Anode

jueves 17 de noviembre de 2011

NEXT-100 sensors

- Excellent charge resolution and linearity, single-pe detection, large dynamic range, etc.
- Favorite candidate: Hamamatsu R1141MOD.
- No. channels ~60.

MPPCs for tracking:

- Fine pixelization (~1cm pitch), low cost, some energy information.
- No. channels ~7500

PMT can

jueves 17 de noviembre de 2011

PMT plane

SiPIT plane

NEXT-100: WLS

Coating of sensors and reflectors with a WLS (TPB) to improve light collection.

NEXT-100: shielding

Shielding design completed. Construction starts early january

NEXT-100: xenon

100 kg of enriched xenon (and 100 of depleted) already procured, and waiting at the LSC.

NEXT-100 performance

	Signal	²¹⁴ Bi	208 TI
1 track cut	0.48	6.0 × 10 ⁻⁵	2.4 × 10 ⁻³
ROI	0.33	2.2 × 10 ⁻⁶	1.9 × 10 ⁻⁶
Topological cut	0.25	1.9 × 10 ⁻⁷	1.8 × 10 ⁻⁷

Rejection Potential	~10 ⁻⁷		
Background	2.0 × 10 ⁻⁴ counts/keV/kg/yr		

NEXT-100 sensitivity

NEXT-100 schedule

- TDR in December, 2011
- Construction and commissioning of shielding and gas system (January 2012 – June 2012).
- Complete design of pressure vessel and manufacture (Sept 2011 – Sept 2012).
- Construction and characterization of detector planes (Second half 2012).
- Construction of field cage and HV system (Second half 2012).
- Commissioning of the NEXT-100 detector at the LSC (early 2013).
- Running in 2014

Summary

- NEXT is a new-generation double beta decay experiments, lead by Spanish and American groups, and to be installed at the Laboratorio Subterráneo de Canfranc (Spain).
- Marries two old instrumental concepts (TPCs and EL) in a novel approach, providing very good energy resolution and tracking for background rejection.
- A crash R&D program has produced to EL prototypes which have already demonstrated the feasibility of the idea.
- Technical design of the NEXT-100 detector essentially completed.
- Pushing ahed on a very thigh schedule to be running in 2014.
- Hoping to be there on time!

