AMoRE: Double Beta Decay Search with CaMoO₄

Sun Kee Kim

For the AMoRE Collaboration

Institute for Nuclear and Particle Astrophysics and Department of Physics and Astronomy Seoul National University

DBD11, Osaka, Nov. 17, 2011

AMoRE Collaboration

Advanced Mo based Rare process Experiment

Korea

Seoul National University Sejong University Kyungpook National University KRISS(Korea Research Institute of Standards and Science)

Russia

ITEP(Institute for Theoretical and Experimental Physics) BNO(Baksan Neutrino Observatory)

Ukraine

INR(Institute for Nuclear Research)

China

Tsinghua University

Germany

University of Heidelberg

5 countries 9 institutions ~70 collaborators

Image: Window State Sta

AMore

- Search for DBD of Mo-100
- WIMP search
- With CaMoO₄ crystal

Yangyang Underground Laboratory(Y2L)

YangYang Underground Laboratory(Y2L)

(Power Plant

Y2L

- Located in a tunnel of Yangyang Pumped Storage Power Plant Korea Middleland Power Co.
- Minimum vertical depth : 700 m
- Access to the lab by car (~2km)
- In operation since 2003

Experiments:

- KIMS: DM search exp. in operation
- AMORE: DBD Search exp. in preparation (additional laboratory space in design)

(Lower D

(Upper Dam)

DBD Searches at Y2L

Passive targets : HPGe + CsI(Tl) [Nuclear Physics A 793 (2007)]

- > 64 Zn EC+ β^+ decay
- > ¹²⁴Sn $\beta\beta$ to excited states of ¹²⁴Te
- > ¹¹²Sn EC+ β ⁺ decay
- Active targets
 - ¹²⁴Sn 0vββ : Sn loaded Liquid scintillator [Astropart. Phys. 31,412 (2009)]
 - > ⁸⁴Sr EC+ β^+ decay : SrCl₂ crystal
 - > ⁹²Mo EC+ β ⁺ decay : Ca^{nat}MoO₄ crystal

[Nucl. Instr. Meth. A 654, 157 (2011)]

> ¹⁰⁰Mo $0\nu\beta\beta$ decay : Ca¹⁰⁰MoO₄ crystal \rightarrow AMoRE

Zn-64 EC+β⁺ decay

HPGe + Zn(8x8x1cm, 457g)+CsI(Tl) crystal

- 100% of HPGe
- 350m underground
- 10cm low background lead,
- 10cm copper and N2 flowing

Calibration by Na22 (β+ radioactive source) Efficiency calculation by Geant4; 3% 1 week data; Coincidence cut with 2 sigma range ; 1 event

 $C_{1} = 10^{2} = 511+510.8 \text{keV}(\text{Th}232) = 10^{2} =$

540

E(keV)

560

580

600

520

500

⇒ 2x10²⁰ year by 95% CL Nucl. Phys. A 793 (2007)

(1.1x10¹⁹ y) Positve evidence by I.BIKIT et.al, App. Radio. Isot. 46, 455, 1995 <= 25% HPGe + NaI(Tl) with 350g Zn at surface

Ov bb search with Sn-loaded LSC

Double beta decay search with ¹²⁴Sn Q = 2287 keV 5% of natural abundance

- 1.1 liter 33% Tin-loaded Liquid scintillator
- 9 Month data at Y2L inside of Pb shielding
- Astropart. Phys. 31 (2009) 412

EC/ β ⁺ decay of ⁹²Mo

• $(A, Z) + e^- \rightarrow (A, Z-2) + e^+ + 628 \text{keV(Q-value)}$ • e^+ stops in active(CaMoO_4) Crystal. • back to back 511 keV gammas at CsI(TI) • Abundance = 92 Mo: 14.84%, 100 Mo: 9.63%

Mo-92 EC

44.1 events at 90 % confidence level

> 2.3×10²⁰ years at 90 % confidence level Nucl. Instr. Meth. A 654, 157 (2011)

> 1.9x10²⁰ years by Barabash et al.,

A.S. Barabash et al., Z. Phys. A 357 351-352 (1997)

New HPGe detector setup for Mo-92

10

$CaMoO_4$ for $0v\beta\beta$

Good dark matter detector as well

CaMoO₄ crystal development

Korea(2003)

Ukraine-CARAT(2006)

Russia(2006)

Russia (2007)

Crystal Characteristics

Nuclear Instruments and Methods in Physics Research A 584 (2008) 334-345

Table 4

Radioactive contaminations in CaMoO₄, CaWO₄, and CdWO₄ crystal scintillators

Source	Activity (mBq/kg)								
	CMO-2	CMO-3	CMO-4	CMO-5	CaWO [29]	CdWO [3,6,48,49]			
²³² Th	≤0.7	≤0.7	≤0.9	≤1.5	0.69(10)	0.053(5)			
²²⁸ Th	0.23(10)	0.42(17)	0.4(4)	0.04(2)	0.6(2)	≤0.004-0.039(2)			
²³⁸ U	≤0.5	≤0.6	≤0.6	≤1.5	5.6(5)	≤0.004			
²²⁶ Ra	2.1(4)	2.5(5)	2.4(1.3)	0.13(4)	5.6(5)	≤0.004			
²¹⁰ Pb	≤398	≤401	≤550	≤17	≤430	≤0.4			
²¹⁰ Po	420(10)	490(10)	550(20)	≤8	291(5)	≤0.4			
⁴⁰ K	≤1.1	≤2.1	≤2.5	≤3	≤12	0.3(1)			
⁹⁰ Sr	≤62	≤178	≤50	≤23	≤70	≤0.2			

Enrichment & Depletion

Mo-100 enrichemeinet : 96.1% (production capability : 30 kg/y)

Ca-48 depletion < 0.001% (Nantural abundance is 0.187%)

experiment. However, further improvement will be difficult task: the half-life limit of 10^{25} yr could be reached only with 200 kg yr statistics. More sensitive searches for 100 Mo $0v2\beta$ decay will evidently need the depletion of Ca in 48 Ca.⁵

Nuclear Instruments and Methods in Physics Research A 584 (2008) 334-345

Depleted Ca : ~ 30 kg available (Ca-48 < 0.001%)</p>
➔ Good for 100 kg CaMooO4 crystals

⁴⁸Ca Enrichment/Depletion at KAERI (Korea Atomic Energy Research Institute)

ALSIS (<u>A</u>dvanced <u>L</u>aser <u>S</u>table <u>I</u>sotope <u>S</u>eparation)

- Features : Isotope-Selective Optical Pumping (ISOP)
 - followed by Non-selective Resonant Photoionization (RPI)
- ISOP gives good isotope-selectivity and non-selective RPI high yield.

Engineering Demonstration (2010~2012)

Production capability (Ca-48) : 1kg/yr

40Ca100MoO4

3 crystals with enriched material ~ 845g Good scintillation property

Preliminary data analysis

BG spectra of SB28

 $\beta - \alpha$ decay in ²³⁸U ²¹⁴Bi (Q-value : 3.27-MeV) \rightarrow ²¹⁴Po (Q-value : 7.83-MeV) \rightarrow ²¹⁰Pb $\alpha - \alpha$ decay in ²³²Th ²²⁰D (Q = 1 = (A1 M M)) \rightarrow ²¹⁶D (Q = 1 = (A1 M M)) \rightarrow ²¹²D

²²⁰Rn (Q-value : 6.41-MeV) \rightarrow ²¹⁶Po (Q-value : 6.91-MeV) \rightarrow ²¹²Pb

BG spectra of S35

β-α decay in ²³⁸U ²¹⁴Bi (Q-value : 3.27-MeV) \rightarrow ²¹⁴Po (Q-value : 7.83-MeV) \rightarrow ²¹⁰Pb

 $\alpha - \alpha$ decay in ²³²Th

²²⁰Rn (Q-value : 6.41-MeV) \rightarrow ²¹⁶Po (Q-value : 6.91-MeV) \rightarrow ²¹²Pb

Background of CaMoO₄ crystals

Crystal scintillator	²²⁶ Ra	²²⁸ Th	²¹⁰ Po
40 Ca 100 MoO ₄ (S35)	1.74	0.26	57
⁴⁰ Ca ¹⁰⁰ MoO ₄ (SB28)	0.08	0.07	
CaMoO ₄ (IM ^a)	2.1 - 2.5	0.2 - 0.4	420 - 550
CaMoO ₄ (ICMSAI ^b)	0.13	≤ 0.04	≤ 8

→ Setting up pilot experiment (Scintillation at 0°C with S35 / SB28 /…)

At room temperature the specific heat of Si is 0.7 J/gK, so $E= 1 \text{ keV}, m= 1 \text{ g} \implies \Delta T= 2.10^{-16} \text{ K},$

Choice of thermometers

- Thermistors (doped Ge, Si)
- TES (Transition Edge Sensor)
- MMC (Metallic Magnetic Calorimeter)
- STJ, KID etc.

Example		
<i>T</i> = 0.1 K		
Si	\Rightarrow	$C = 4.10^{-15} \text{ J/K}$
E= 1 keV	\Rightarrow	ΔT = 0.04 K

 $C \propto \left(\frac{T}{\Theta}\right)^2$

Metallic Magnetic Calorimeter (MMC)

Magnetic material (Au:Er) in dc SQUID

Au:Er(10~1000ppm) paramagnetic system metallic host: fast thermalization (~ 1ms) Can control heat capacity by magnetic field

5 mT $\rightarrow \Delta \epsilon = 1.5 \ \mu eV$ 1 keV $\rightarrow 10^9$ spin flips

- Fast
- Wide working temperature
- Absorber friendly

Experimental setup at KRISS with MMC to measure temperature changes

coil

base temperature : 13 ~ 100 mK

Performance of CMO+MMC

Astropart. Phys.34, 732, 2011

CaMoO₄ DBD Sensitivity

100 kg CaMoO4 Cryogenic detector Mo-100~ 50 kg Efficiency ~ 0.8

5 years, 100 kg ${}^{40}Ca^{100}MoO_4$ 3 x10²⁶ years ~ 50 meV

Werner Rodejohann, Int. J. M. Phys., 2011

Dark matter sensitivity of CaMoO₄ cryogenic experiment

Toward a full scale experiment

Crystal size: 0.6 cm³

Energy resolution 2keV (60keV) 11 keV (5.5MeV) Crystal size: ~ 60 cm³, 250 g

Energy resolution <1 % @ 3 MeV

Additional light sensor

Time constant of phonon signal

Efficiency ~ 0.8			.8	dia	meter, I	mm					
		30	35	40	45	50	55	60	65	70	Si or Ge _TES/MMC/NTD
	30	0.794	0.806	0.813	0.822	0.826	0.831	0.834	0.839	0.841	
	35	0.799	0.808	0.821	0.829	0.833	0.839	0.843	0.846	0.849	60 cm ³ CMO
	40	0.804	0.816	16 0.822 0.830 0.838 0.842 0.849 0.852 0.856							
hoight	45 0	0.808	0.819	0.829	0.835	0.841	0.847	0.851	0.856	0.860	C = 0.17 n l/K at 10 mK
meight,	50	0.809	0.820	0.830	0.839	0.845	0.851	0.854	0.861	0.864	$CaMOO_{A} = 0.17 \text{ HJ/K at 10 HK}$
	55	55 0.809 0.823 0.834 0.841 0.848 0.856	0.857	0.864	0.868	1.4 IIJ/K at 20 IIIK					
	60	0.810	0.825	0.835	0.845	0.850	0.856	0.860	0.866	0.871	
	65	0.813	0.825	0.838	0.846	0.851	0.859	0.863	0.869	0.873	
	70	0.817	0.828	0.839	0.846	0.853	0.860	0.867	0.869	0.875	
											Phonon sensor (MMC)

->

New sensor for large heat capacity

Meander is made in U. of Heidelberg.

2.5 x 2.5 x 0.07 mm³ gold foil

C = 0.6 nJ/K at 20 mK

60 cm³ CMO *C* = 0.17 nJ/K at 10 mK 1.4 nJ/K at 20 mK

4cm x 4 cm

Measurements in progress.

Toward the full scale experiment!

SUMMARY

AMoRE : collaboration for DBD search with CaMoO4 Large volume ⁴⁰Ca¹⁰⁰MoO₄ crystals of high quality $\Box \sim 0.85$ kg crystal made of enriched material at Y2L ■ Existence of ~30 kg depleted Ca Pilot experiment of $\sim 1 \text{ kg}$ with scintillation technique + CsI(Tl) active veto is in preparation Development of cryogenic CaMoO4 detector 2g crystal with MMC sensor – demonstrated the principle > 200 g crystal setup in progress 100kg CaMoO4 cryogenic detector: achievable goal $\sim 3 \times 10^{26} \text{ yrs} (\sim 0.05 \text{ eV})$ Competitive dark matter search

Design of the experiment in progress: geometry, cryostat, simulation,...

Included in the National Facility Road Map

Thank you for your attention !

²³⁸U/²³²Th decay chains

