# CdWO4 crystal in KamLAND for neutrino-less double beta decay research

#### <u>Outline</u>

- 1, Introduction
- 2, test measurement with CdWO4 crystal
- 3, deployment of CdWO4 crystal in KamLAND detector
- 4, Summary

Satoru Yamada RCNS, Tohoku University

Nov. 17, 2011 @DBD11 in Osaka

# 1, Introduction

# KamLAND detector (before KamLAND-zen)







#### KamLAND for double beta decay measurement

- the radioactivity level inside the detector is very low
  - ${}^{238}\text{U}~7.3 \times 10^{-19}[g/g]$
  - ${}^{232}$ Th 1.5  $\times$  10<sup>-17</sup> [g/g]
  - ${}^{40}K < 1.5 \ [\mu Bq/m^3]$
- The detector is capable of dissolving double beta decay material into Liquid Scintillator (KamLAND-zen),

or putting solid material inside the KamLAND balloon.

-> <sup>116</sup>Cd crystal in KamLAND is one of those options.

| Isotope           | Q−value<br>[ MeV ] | Abundance [ % ] | 2 $\nu$ half life<br>(yr)    |
|-------------------|--------------------|-----------------|------------------------------|
| <sup>48</sup> Ca  | 4.27               | 0.19            | $4.2 \times 10^{19}$         |
| <sup>150</sup> Nd | 3.37               | 5.6             | 7.8×10 <sup>18</sup>         |
| <sup>96</sup> Zr  | 3.35               | 2.8             | 2×10 <sup>19</sup>           |
| <sup>100</sup> Mo | 3.03               | 9.6             | 7.1×10 <sup>18</sup>         |
| <sup>82</sup> Se  | 3                  | 9.2             | 9.2×10 <sup>19</sup>         |
| <sup>116</sup> Cd | 2.8                | 7.5             | <b>2.9 × 10<sup>19</sup></b> |
| <sup>130</sup> Te | 2.53               | 34              | $0.9 \times 10^{21}$         |
| <sup>136</sup> Xe | 2.47               | 8.9             | $2.1 \times 10^{21}$         |
| <sup>124</sup> Sn | 2.29               | 5.79            | >1 × 10 <sup>17</sup>        |
| <sup>76</sup> Ge  | 2.04               | 7.8             | $1.5 \times 10^{21}$         |

# CdWO<sub>4</sub> crystal

# Property of CdWO<sub>4</sub> crystal



| Density:                               |                           | 7.9 g/cm <sup>3</sup> |
|----------------------------------------|---------------------------|-----------------------|
| Melting point                          |                           | 1598 K                |
| Hygroscopicity                         |                           | absent                |
| Chemically                             |                           | inert                 |
| Max Emission Spect                     | rum                       | 470-540 nm            |
| Refractive index                       |                           | 2.3                   |
| Light yield                            |                           | ~ 40% to Nal ?        |
| Radio purity                           |                           | < 10 µBq/kg           |
| X <sub>0</sub>                         |                           | 1.11 cm               |
| λ                                      |                           | 21.7 cm               |
| Timing:                                | 88.7% -                   | 14.5 µsec             |
|                                        | <b>8.7% - 4</b> .         | 6 µsec                |
| 2.1% - 0.8 µsec                        |                           |                       |
|                                        | 0.5% - 0.                 | 15 µsec               |
| For example: L.Bard nucl-ex/0608004v1, | elli at all,<br>August 20 | 006                   |

# Past double beta decay experiment with CdWO<sub>4</sub>

#### crystal

- F.A.Danevich at all. Phys Rev C68, 035501 (2003)
- Solotvina Underground Laboratory (1000 meters of equivalent)
- Four CdW0<sub>4</sub> crystals build with enriched up to 83% (Natural – 7.49%)
- Crystals mass 330g  $\rightarrow$  <sup>116</sup>Cd mass is 87 g.
- Crystals were viewed by 55 cm long light guide and background 5" EMI PMT
- Active shielding made of natural, CdW04, plastic scintillators
- Passive shielding: high purity cooper 3-6 cm, Lead cm and 16 cm Polyethylene
- Cosmic veto: two plastic scintillators (120\*130\*3 cm installed above passive shield

$$T^{2v}_{1/2} = [2.9 \pm 0.06(stat)^{+0.4}_{-0.3}(sys)] \cdot 10^{19} y$$
  
was obtained



### 2, Test measurement of CdWO4's scintillation signal



 \* Natural CdWO4 crystal (column shape) Diameter = 39.65mm, height = 40.00mm total mass = 390g
<sup>116</sup>Cd mass = 9.4g

Record waveforms with a digital scope and store them in computer with following later analysis





# Decay curve of scintillation light

Waveforms recorded by a digital oscilloscope were summed.



2300 p.e. @1MeV was obtained.

nucl-ex/0608004v1, August 2006

#### Energy spectrum of <sup>60</sup>Co source



# 3, Installation of CdWO<sub>4</sub> crystal in KamLAND



Put the Cd crystal in the center position using a calibration source deployment system(MiniCAL).





Hole

Measurement was done – with Cd crystal and <sup>60</sup>Co source with Cd crystal only with nothing inside the balloon other than LS To measure scintillation light from Cd Crsytal, front-end electronics continue taking data for more than a few tens of micro second.

KamLAND DAQ

Signals are processed by two types of electronics.

- \* KamFEE : 30µs is needed to digitize waveform
- \* **MoGURA** : dead time free new electronics. Not covered all PMTs.

-> MoGURA was used for the detection of signals from Cd crystal



#### Expected timing distribution of hits







NIMA 569 (2006) 743-753

#### New trigger logic for Cd signal





Fitting curve : f(t) = amplitude \* exp( - t/decaytime) + baseline

#### Hit distribution in one event

#### background and Cd-only run

**Distributions of fitting parameters** 



### Muon subtraction

![](_page_14_Figure_1.jpeg)

After pulses after muon event mimic Cd signals.

![](_page_14_Figure_3.jpeg)

Comparing the Cd-triggered evens with the FBE electronics data, we can subtract muon. Then higher peak can be removed.

#### Cd crystal and <sup>60</sup>Co source run

![](_page_15_Figure_1.jpeg)

#### **Rough estimation of the Resolution**

Integrate "f(t) = amplitude \* exp( - t/decaytime) + baseline" and obtain # of hits

![](_page_16_Figure_2.jpeg)

Black : with Co+Cd threshold = 475hits/7us

Red : with Co+Cd Lth = 490hits/7us

![](_page_17_Picture_0.jpeg)

\* Natural CdWO<sub>4</sub> crystal was prepared and the property of scintillatoin light was measured.

\* Crystal was directly connected with PMT and about 3% energy resolution @ 1MeV was obtained.

\* CdWO4 crystal was deployed in KamLAND together with <sup>60</sup>Co source.

\* new Trigger logic detected Cd scintillation signals

- \* Obtained peak from <sup>60</sup>Co's one gamma ray was rather broad.
- \* To investigate the result further, detailed simulation or measurement with other sources will be needed.