LUCIFER: A Scintillating Bolometer Array for the Search of Double Beta Decay

Fabio Bellini

"Sapienza" Università di Roma & INFN Roma

Osaka 17/11/2011

Bolometers for DBD search

- Well established technology
 - DBD source embedded in a crystal cooled down at few mK
 - (Only) energy measured via temperature variation ∆T =E/C induced by particle energy release

 Need very low heat capacity (dielectric, diamagnetic): TeO₂: ΔT ~0.1 mK/MeV

- ▶ TeO₂: excellent energy resolution (~0.3% @ 2-3 MeV) and massive detector
- Iow background ~few · 10⁻² cts/keV/kg/y
- Need <u>~10⁻³ cts/keV/kg/y</u> to access inverted hierarchy

The isotope choice

- The possibility to use different candidates depends on:
 - capability to grow large radio-pure crystals with good mechanical and thermal properties
 - isotopic abundance and cost/easiness enrichment
- All isotopes tested as bolometer in crystalline form with the exception of ¹³⁶Xe and ¹⁵⁰Nd

	T 4 : A1 1	<u> </u>			
$\beta\beta$ Decay Reaction	Isotopic Abundance	Q-value	130 Te 116 Cd 100 Mo		
pp Decay reaction	[atomic %]	$[\mathrm{keV}]$			
⁴⁸ Ca→ ⁴⁸ Ti	0.2	4274			
$^{76}\mathrm{Ge}{\rightarrow}^{76}\mathrm{Se}$	7.6	2039	10 ⁴		
$^{82}\text{Se}{\rightarrow}^{82}\text{Kr}$	8.7	2996	S		
$^{96}\mathrm{Zr}{\rightarrow}^{96}\mathrm{Mo}$	2.8	3348			
$^{100}Mo \rightarrow ^{100}Ru$	9.6	3034			
$^{116}\mathrm{Cd}{\rightarrow}^{116}\mathrm{Sn}$	7.5	2809			
$^{124}Sn \rightarrow ^{124}Te$	5.8	2288	^{10²} – Environmental		
$^{128}\text{Te}{\rightarrow}^{128}\text{Xe}$	31.8	866	"underground" Background: ""		
$^{130}\text{Te}{\rightarrow}^{130}\text{Xe}$	34.2	2528	$^{10^1}$ 238 U and 232 Th trace		
136 Xe \rightarrow 136 Ba	8.9	2458	contaminations		
$^{150}\mathrm{Nd}{\rightarrow}^{150}\mathrm{Sm}$	5.6	3368			
			2200 2600 3000		
			Energy [keV]		

• Gain ~ 100 if $Q_{\beta\beta}$ > 2615 keV common highest γ line (²⁰⁸TI) with BR ~36% in Th chain

The a problem

- Bolometers are fully sensitive, up to detector surface \Rightarrow no dead layer
- Surface contamination of the <u>bolometers themselves</u> or of the <u>materials surrounding them</u> emitting α particles gives a continuum background in the Region of Interest

- Very difficult to reduce this background below 0.05 cts/keV/kg/y below and above 2615 keV
 - need α rejection >98% to reach 10⁻³ cts/keV/kg/y

The solution

- Scintillating bolometers: use different α/γ light emission for background discrimination
- The light detector: a thin opaque bolometer facing a polished side of the main bolometer

 The experimental basis of this technique was the R&D activity performed by <u>S.Pirro</u> at LNGS in the framework of the Bolux(INFN), ILIAS-IDEA (EC WP2-P2) program

LUCIFER

Low-background Underground Cryogenics Installation For Elusive Rates

ERC-2009-AdG 247115

Lucifer is a Latin word (from the words *lucem ferre*), literally meaning "light-bearer", which in that language is used as a name for the dawn appearance of the planet Venus, heralding daylight.

Principal Investigator: F. Ferroni

> Co- Investigator: A.Giuliani

Coordinator: S.Pirro

The candidates: CdWO₄

	Q _{ββ} (keV)	Useful material (% weight)	LY (keV/MeV)	QF
CdWO ₄	2809	32	~17	~0.16

- Pro:
 - ~0.5 kg crystal successfully tested
 - very good crystal quality
 - high light yield

80 Astropart.Phys. 34:143 ,2010 60 208т Light [keV] 40 ²¹⁰Pc Q_{BB} 238_{1} 20 180W .**.**. 0. , անդրդաներ հերաներություն հերաներություն հերաներություն հերաներին հերաներություն հերաներություն հերաներ հերանե որորդորդո 400 1000 2000 3000 4000 5000 Energy (Heat) [keV]

- Cons:
 - only 32% of useful material
 - ¹¹³Cd (huge neutron cross section) \Rightarrow (n, γ) reaction \Rightarrow possible continuum γ background

The candidates: ZnMO₄

	Q _{ββ} (keV)	Useful material (% weight)	LY (keV/MeV)	QF
ZnMO₄	3034	44	~1	~0.2

- Pro: good pulse shape discrimination on main (heat) bolometer Astropart.Phys. 34:797 ,2011
- Cons: poor light yield ,only small crystals (~30 g) up to now

JINST 5:P11007,2010.

The candidates: ZnSe

	Q _{ββ} (keV)	Useful material (% weight)	LY (keV/MeV)	QF
ZnSe	2995	56	~7	~4

• Pro:

- ~ ~340 g crystal successfully tested
- good light yield and radio-purity
- pulse shape discrimination on light detector
- the most mass effective
- Cons:
 - inverted Quenching Factor!
 - crystal production: not yet solid protocols and reproducibility issue

Astropart.Phys. 34:344 ,2011

The candidates: ZnSe

- No explanation for the inverted Quenching Factor.
- Discarded hypotheses:
 - ZnSe self-absorption
 - Light collection efficiency
 - Light detector transparent to certain wavelengths

The scintillating candidates

	Q _{ββ} (keV)	Useful material (% weight)	LY (keV/MeV)	QF
CdWO ₄	2809	32	~17	~0.16
ZnMO ₄	3034	44	~1	~0.2
ZnSe	2995	56	~7	~4

• Baseline crystal for LUCIFER: **ZnSe**

ZnSe

- Luminescence properties well known
- Crystal growth known:
 - Bridgman technique at 1525° C
 - high twining tendency
 - high volatility: stoichiometry control

- Effort focused on:
 - enrichment
 - ZnSe synthesis
 - efficient crystal growth

ZnSe production

- Need radio-chemical pure Se
 - ICPMS measurements
- Enrichment (URENCO)>95%
 - Chemical problems in Se conversion (mainly reagent contamination)
- Beads (powder not good for crystal)
 - require dedicated instruments (HPGe gamma spectroscopy)
 - ► Purification (99.999%)⇒zone refining
- Synthesis of ZnSe
 - High or low temperature method (yield optimization)
- Growth of ZnSe crystal
 - Avoid twining and reach reproducibility

Light detectors

- Light Detectors are generally pure Germanium disks (thickness 0,3-1 mm)
- Performances are evaluated on the ⁵⁵Fe doublet: 5.9 & 6.5 keV x-Ray
 - Good energy resolution: σ~130 eV theoretical resolution σ~80 eV

LD test: TeO₂ Cerenkov light

- TeO₂ bolometers don't scintillate: detection of Cerenkov light
- Cerenkov threshold: 50 keV for β , α below threshold \Rightarrow particle discrimination

 $^{\rm 147}Sm$: α decay at 2310 keV

Light detector of pure Ge 66 mm diameter, 1mm thick. One side coated with SiO₂ to increase absorption of µm wavelengths.

Results

arXiv:1106.6286 submitted to Astropart. Phys.

• ~2 σ separation

R&D on going on 5x5x5 cm³ TeO₂ crystal: light collection optimization

LUCIFER Detector

• Single module: 4ZnSe -1light detector

Tower: 12 single modules

- Hosted @ Laboratori Nazionali del Gran Sasso
 - Equivalent vertical depth relative to a flat overburden: ~ 3.1 ± 0.2 km.w.e
 - Gamma flux:~0.73 γ/(s cm²)
 - Neutron flux: ~4 · 10⁻⁶ n/(s cm²) below 10 MeV
 - Muon flux: (2.58±0.3) · 10⁻⁸ μ/(s cm²)

Conclusions

- The main challenge for a 0vDBD next generation bolometer experiment is the α background rejection to ~10⁻³ cts/keV/kg/y
- The scintillating bolometer is a promising technique
 - the LUCIFER goal is to demonstrate the feasibility of this technique on a reasonable large scale
 - but has a remarkable physics reach by itself

ZnSe	⁸² Se weight(kg)	Half life(10 ²⁶ y)	m _{ββ} (meV)
baseline	17.6	2.3	51-65

assuming $\Delta E \sim 10 \text{keV}$, live time ~ 5 y, bkgd~10⁻³ cts/keV/kg/y

J.Mendez et al. arXiv:0801.3760; F.Simkovic et al. Phys.Rev. C77 045503,(2008); J.Suhonen et al. Int.J.Mod.Phys E17 1 (2008)

• Data taking foreseen in 2014