

Neutrino Mass Measurements in Laboratory Experiments

Thomas Thümmler for the KATRIN collaboration International Workshop on Double Beta Decay and Neutrinos, Osaka, Japan, 2011

KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Nuclear Physics (IK)

Neutrino Mass Measurements in Laboratory Experiments

Thomas Thümmler for the KATRIN collaboration International Workshop on Double Beta Decay and Neutrinos, Osaka, Japan, 2011

KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Nuclear Physics (IK)

- Motivation of v-mass determination
- Direct methods
- Present and future experiments
- KATRIN overview
- KATRIN status
- Summary and Outlook

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Motivation: v's in Astroparticle Physics

cosmology: role of v's as hot (warm?) dark matter? particle physics: origin and hierarchy of the v-mass?

Neutrinos mass: status and perspectives

 $(\Delta m_{32})^2 \approx 2.4 \times 10^{-3} \text{ eV}^2/\text{c}^4$

 $(\Delta m_{21})^2 \cong 7.6 \times 10^{-5} \text{ eV}^2/\text{c}^4$

Experiments on Neutrino Oscillations:

- Clear evidence for neutrino flavour oscillations:
 - Atmospheric neutrinos:
 - Solar neutrinos:
- → Well established fact: $m_v \neq 0$

Input from Cosmology:

- measures Σm_i and HDM Ω_v
- very sensitive, but model dependent!
- WMAP 7yr: Σm_i < 1.2 eV
 (Hannestad et al., arXiv:1004.0695)
- potential: Σm_i = 20-50 meV
 (Planck, LSST, weak lensing)

Neutrinos mass: status and perspectives

 $m(v_e)$ from β decay: model-independent, based on kinematics and energy conservation

$$m(v_e) = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 \cdot m_i^2}$$

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} F(E,Z) \cdot \theta(E_0 - E - m_i)$$
(v-mass)²

m_v ≠ 0 influence: ■ shift of E₀ ■ changed shape ■ shape to be analysed!

key requirements:

- low endpoint β source
- high count rate
- high energy resolution
- extremely low background

Two complementary approaches with different systematics:

	calorimeter	spectrometer
source	 ¹⁸⁷Re (metallic or dielectric) source = detector 	T_2 (gaseous or condensed) • external β source
endpoint	2.47 keV	18.6 keV
t _{I/2}	4.3 × 10 ¹⁰ y	I 2.3 y
activity	low: < 10 ⁵ β/s, ≈ 1 Bq / mg Re	high: ≈10 ¹¹ β/s, 4.7 Ci/s injection
technique	single crystal bolometer	electrostatic spectrometer
response	entire β decay energy	kinetic energy of β decay electrons
interval	entire spectrum	narrow interval close to endpoint
method	differential energy spectrum	integrated energy spectrum
set-up	modular size, scalable	integral design, size limits
resolution	$\Delta E_{expected} \approx 5 - 10 \text{ eV} \text{ (FWHM)}$	∆E _{expected} ≈ 0.93 eV (100 %)
	MARE	

T. Thümmler - Neutrino Mass Measurements in Laboratory Experiments

T. Thümmler - Neutrino Mass Measurements in Laboratory Experiments

11

ARE Phase-I:	$\frac{1}{10000000000000000000000000000000000$
	Improve sensitivity for m_{ν} by factor 10 $m_{\nu} \approx 2 \ eV$
$\Delta E = 15 \text{ eV}$ $\Delta t = 50 \mu\text{s}$	Scrutinize tritium-based MAINZ and TROITZK result
J years	■Milano: new AgReO ₄ crystals, 500 µg absorber at T ≈ 85 mK, 6x6 pixel arrays, energy resolution ΔE = 34 eV at 2.5 keV
ARE Phase-II:	improve sensitivity for m _v by another factor 10
	• Scrutinize KATRIN in future $m_{\nu} \approx 0.2 \ {\rm eV}$
ΔE = 5 eV Δt = 1 μs > 5 years	 R&D program for new detectors magnetic micro-calorimeters (MMC) + paramagnetic sensor + SQUID projected sensitivity requires ~50000 bolometers and t > 5 years

MARE P

MARE P

based on MANU and MIBETA (result: $m_{y} < 15 \text{ eV} / 6 \times 10^{6} \beta$'s)

- - $m_{\nu} \approx 2 \text{ eV}$

¹⁸⁷Re as β -emitter: isotropic abundance of 62.6 % $^{187}_{85}\text{Re} \rightarrow ^{187}_{86}\text{Os} + \text{e}^- + \bar{\nu}_{\text{e}}$ 5/2⁺ to 1/2⁻ first order unique forbidden transition

Measuring the Neutrino Mass

MARE: Microcalorimeter Arrays for a Rhenium Experiment

MARE: Microcalorimeter Arrays for a Rhenium Experiment

moving towards ¹⁶³Ho isotope

• EC decay of Holmium to Dysprosium:

$$^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e$$

- Q_{EC} ≈ 2.5 keV, t_{1/2} = 4570 y
- Use TES arrays with 32x32 pixels
- Resolution 1 2 eV FWHM
- Need 5 TES arrays for 0.2 eV/c² sensitivity
 - Makes 5000 pixels (vs. 50000 for Re)
- ¹⁶³Ho production has been demonstrated
- Embedding process is under investigation
- Readout developed and tested as prototype
- Next: TDR for funding

according to F. Gatti, ISAPP 2011 and J Low Temp Phys (2008) 151

KATRIN

T. Thümmler - Neutrino Mass Measurements in Laboratory Experiments

The MAC-E Filter Magnetic Adiabatic Collimation with Electrostatic Filter

(A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

The KATRIN Setup

Windowless Gaseous Tritium Source WGTS

1.7 × 10¹¹ Bq

 $T = 27 K \pm 30 mK$

 $P_{ini} \approx 10^{-3} \text{ mbar}$

> 95%

B = 3.6 T

Design parameter

luminosity

injection rate

Tritium purity

temperature

magnetic guiding

pressure

HH	
	Kar sruh e Institute of Technology

Tritium Laboratory Karlsruhe - a unique research facility in Europe

Windowless Gaseous Tritium Source WGTS

- designed for a stability at 10⁻³ level
- achieved: 2 × 10⁻⁴ over 4 months

Windowless Gaseous Tritium Source WGTS

- Tested all major technologies for the Main Spectrometer
 - Vacuum, electro-magnetic and transmission properties, detector
- Achieved quasi background free operation by
 - Avoiding Rn and electron trapping conditions in the volume

Tests have been finished, vessel moved to final position in beam-line

Main Spectrometer

Main Spectrometer:

∳∎11.

- MAC-E Filter principle \rightarrow precise energy analysis
- Vacuum vessel on retarding potential
- high resolution: ΔE = 0.93 eV

$$\Delta E/E_0 = B_{min}/B_{max} = 1/20000$$

- Ø 10 m, length 23 m
 - volume: 1240 m³
 - inner surface: 690 m²
- Reduce background rate:
 - ultra high vacuum (UHV): p < 10⁻¹¹ mbar
 - induced by cosmic ray muons:
 - \rightarrow background increase
 - \rightarrow counter measure: wire electrode

Precision Energy Filter:

variable retardation

$$U_0 = -18.4 \dots -18.6 \text{ kV}$$

 $\Delta E \sim 0.93 \text{ eV}$

Wire Electrode System - Mounting

Installation ongoing \rightarrow finished until end of 2011

Wire Electrode System - Mounting

Installation ongoing \rightarrow finished until end of 2011

HV Monitoring of Main Spectrometer Energy Filter

KATRIN sensitivity goal requires: 60 mV (3×10⁻⁶) at 18.6 kV

non-trivial, not state-of-the-art and of serious importance for KATRIN

Monitoring of the analyzing potential in the main spectrometer:
 verification with ^{83m}Kr reference source at monitor spectrometer
 online monitoring with precision HV divider

Air Coil System

Earth magnetic field compensation & low field correction

- earth magnetic/environmental fields distort magn. flux tube in low field region (0.3 mT)
- needs to be compensated!
- Iow field correction:
 - optimize flux tube
 - fine tune transmission and resolution.

Air Coil System

Earth magnetic field compensation & low field correction

- earth magnetic/environmental fields distort magn. flux tube in low field region (0.3 mT)
- needs to be compensated!
- Iow field correction:
 - optimize flux tube
 - fine tune transmission and resolution.

Main Detector

Si-PIN diode

• detection of transmitted β 's (mHz to kHz)

Iow background for T₂ endpoint investigation

• high energy resolution $\Delta E = 0.7 \text{ keV} (\sigma)$ at 18.6 keV

12 rings with 30° segmentation + 4-fold center = 148 pixels

minimize bg, investigate systematic effects

 compensate field inhomogeneities of spectrometer's analyzing plane.

VACUUM, CALIBRATION SYSTEM

KATRIN Sensitivity

Influence on β decay near the endpoint:

$$dN/dE = K F(E,Z) p E_{tot} (E_0 - E_e) \left(\cos^2(\theta) \sqrt{(E_0 - E_e)^2 - m_{1,2,3}^2} + \sin^2(\theta) \sqrt{(E_0 - E_e)^2 - m_{sterile}^2} \right)$$

taken from C. Weinheimer, 2011

What about sterile Neutrinos in KATRIN?

- Single β decay experiments (MARE, Project8, KATRIN) can detect a sterile neutrinos signature.
- KATRIN: for $m_{sterile} > 3.2 \text{ eV}$ a 3 σ detection could be made for any mixing angle.
- Single β decay offers a complementary input, independent of CP phases.

Summary and Outlook

- motivation for neutrino mass meas. from particle and astroparticle physics
- lacksquare eta decay offers a model-independent method to determine m_v
- Project 8 investigates a new detection method for future experiments
- Re-based MARE is moving to a new isotope ¹⁶³Ho in order to reach a sensitivity, which is comparable to KATRIN in future.
- T₂-based KATRIN is designed to reach a sensitivity of 0.2 eV on m_v
- KATRIN construction continuing:
 - Main Spectrometer Detector commissioning starts spring 2012
 - complete system integration and start of data taking not before 2014

