Determining neutrino properties from precision cosmology

Yvonne Y. Y. Wong RWTH Aachen

International workshop on double beta decay and neutrinos, Osaka, November 14 – 17, 2011

Probe 1: Cosmic microwave background anisotropies...

NASA/WMAP science team

Many probes:

- > 0.5 deg: COBE, WMAP, Planck
- < 0.5 deg: DASI, CBI, ACBAR, Boomerang, VSA, QuaD, QUIET, BICEP, ACT, SPT, etc.

Probe 2: Large-scale structure (LSS) distribution...

Tegmark et al., 2002

Probe 3: Standard candles (distance vs redshift)...

Type la supernova (SNIa).

- Objects of known luminosity.
- Hubble diagram of **SNIa** measures luminosity distance vs redshift.

Probe 4: Standard rulers (distance vs redshift)...

- Objects of known physical size.
- BAO peak sourced by the same physics as CMB acoustic peaks
 - → Position of peak in 2-point correlation of the matter distribution is known.
- Measures angular diameter distance vs redshift.

Baryon acoustic oscillation (BAO) peak Measured by SDSS

Eisenstein et al., 2005

The concordance flat ΛCDM model...

• The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

Neutrino energy density (standard picture)...

• Neutrino decoupling at T ~ O(1) MeV. \blacksquare Fixed by weak interactions

• Constraining/measuring **neutrino masses** from cosmology.

• Hint of **sterile neutrinos** from the CMB?

Part 1: Neutrino masses from cosmology

Neutrino dark matter...

• If m_v > 1 meV, cosmological neutrinos are nonrelativistic today.

Total neutrino
energy density
$$\Omega_{v,0} h^2 = \sum \frac{m_v}{94 \, \text{eV}}$$
 \longrightarrow Neutrino dark matter

- Predictions based on laboratory limits:
 - Neutrino oscillations: $\min \sum m_v \sim 0.05 \text{ eV} \rightarrow \min \Omega_v \sim 0.1\%$
 - Tritium beta decay: $\max \sum m_v \sim 7 \text{ eV} \rightarrow \max \Omega_v \sim 12\%$

Neutrinos cannot make up all of the dark matter content in the universe

 $m_v > T_v \sim 10^{-4} eV$

Neutrino hot dark matter...

• Neutrino dark matter comes with significant "thermal" motion.

 In turn, free-streaming (non-clustering) neutrinos slow down the growth of gravitational potential wells on scales λ<< λ_{FS} or wavenumbers k >> k_{FS}.

 The presence of Hot Dark Matter slows down the growth of Cold Dark Matter perturbations at large wavenumbers k.

Neutrino effects on the CMB anisotropies...

- Present constraints come mainly via the early ISW effect:
 - γ decoupling: T ~ 0.26 eV.
 - Equality at T ~ 1 eV.
- A **O(0.1-1) eV** neutrino becomes nonrelativistic in the same time frame.

WMAP7 only (Λ CDM+m_v): $\sum m_v < 1.3 \text{ eV}(95 \% \text{ C.I.})$

Present constraints...

Present constraints and future sensitivities...

Part II: Hint of sterile neutrinos from the CMB?

Experimental anomalies & the sterile v interpretation...

- Experiments at odds with the standard **3-neutrino interpretation** of global neutrino oscillation data:
 - LSND (\bar{v}_e appearance)
 - MiniBooNE anti-neutrinos (\overline{v}_e appearance)
 - Short baseline reactor experiments (re-evaluation of neutrino fluxes) (\bar{v}_e disappearance)

• If interpreted as oscillation signals \rightarrow a 4th (or more) sterile neutrino with $\Delta m^2 \sim O(1 \text{ eV}^2)$.

Sterile = does not violate LEP bound on Z decay width

Experimental anomalies & the sterile v interpretation...

• Best-fits parameters: Kopp, Maltoni & Schwetz 2011

Reactor experiments only

Table I: Best fit points for the 3+1 and 3+2 scenarios from reactor anti-neutrino data. The total number of data points is 69 (Bugey3 spectra plus 9 SBL rate measurements; we have omitted data from Chooz and Palo Verde, which are not very sensitive to the model parameters, but would dilute the χ^2 by introducing 15 additional data points). For no oscillations we have $\chi^2/dof = 59.0/69$.

Impact of light (eV mass) sterile v on cosmology...

Impact of light (eV mass) sterile v on cosmology...

- Preferred ∆m² and mixing → thermalisation of sterile neutrino state prior to neutrino decoupling.
 - → Excess relativistic energy density.

$$\rho_{v} + \rho_{X} = N_{\text{eff}} \left(\frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} \right)^{\text{heutino}}$$

$$= (3.046 + \Delta N_{\text{eff}}) \left(\frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} \right)$$

Observables

CMB, large-scale structure, BBN

If the sterile neutrino is sufficiently massive → hot dark matter.

2a. CMB+LSS

Evidence for N_{eff} > 3 from CMB+LSS...

Recent CMB+LSS data appear to prefer N_{eff} > 3!

Evidence for N_{eff} > 3 from CMB+LSS...

- Trend since WMAP-1.
- Exact numbers depend on the cosmological model and the combination of data used.
- Simplest model (vanilla ΛCDM+N_{eff}):
 - Evidence for N_{eff} > 3 @ 98.4% (WMAP7+ACT+ACBAR+H₀+ BAO).
 Hou, Keisler, Knox, et al. 2011

How it works...

• Looks easy... but we also use the same data to measure at least 6 other cosmological parameters: $(\Omega_b h^2, \Omega_m h^2, h, n_s, A_s, \tau)$

\mathbf{N}_{eff} effects on the CMB...

- Matter-radiation equality (first peak height relative to plateau)
- Sound horizon/angular positions of peaks
- Anisotropic stress
- Damping tail

Degeneracies...

• Matter density

N_{eff} effects on the CMB...

- Matter-radiation equality (first peak height relative to plateau)
- Sound horizon/angular positions of peaks
- Anisotropic stress
- Damping tail

Degeneracies...

- z_{eq} affects the sound horizon: degenerate with baryon and DM densities.
- Angular positions depend on distance to LSS and hence on DE density.

N_{eff} effects on the CMB...

- Matter-radiation equality (first) peak height relative to plateau)
- Sound horizon/angular positions of peaks
- Anisotropic stress
- **Damping tail**

- Degeneracies...
- Anisotropic stress; damps oscillations at I > 200.

particles

Partially degenerate with primordial fluctuation amplitude.

 Measurement of the anisotropic stress (since WMAP-5) gives lower limit on N_{eff} from CMB alone (without supplementary large-scale structure data).

 Upper limit (pre 2010) requires combination with other observations (LSS, HST, SN) sensitive to the matter density and the expansion rate...

OR...

N_{eff} effects on the CMB...

- Matter-radiation equality (first peak height relative to plateau)
- Sound horizon/angular positions of peaks
- Anisotropic stress
- Damping tail

Degeneracies...

- $N_{eff} \rightarrow$ higher expansion rate \rightarrow more Silk damping.
- Some degeneracy with the Helium fraction.

• N_{eff} and the CMB damping tail:

Evidence for N_{eff} > 3 from BBN...

• Light element abundances are sensitive to excess relativistic energy density.

Evidence for $N_{eff} > 3$ from BBN...

- Mild preference for $N_{eff} > 3$ (or $N_s > 0$) from Deuterium+Helium-4.
- But $N_s = 2$ is strongly disfavoured.

Hamann, Hannestad, Raffelt & Y³W 2011

Quick fix: degenerate BBN...

- Introduce a neutrino chemical potential (= O(0.1) lepton asymmetry).
- Then even $N_s = 3$ is allowed by BBN.

2c. Implications for the LSND/MiniBooNE/reactor v_s

Can the reactor/MiniBooNE sterile v explain $N_{eff} > 3$?

- Short answer: Not so easy.
- Reason: eV mass sterile neutrinos violate CMB+LSS v mass bounds.

• 3+1 thermalised sterile:
$$m_s < 0.48 \text{ eV} (95\% C.I.)$$

Lab best-fit:
$$m_s \sim 1 \, {
m eV}$$

• 3+2 thermalised sterile:

$$m_{sl} + m_{s2} < 0.9$$
 eV (95% C.I.)

Lab best-fit: $m_{sl} \sim 0.7 \text{ eV}$, $m_{s2} \sim 0.9 \text{ eV}$

Is there a way out?

- **Plan A**: Suppress sterile neutrino thermalisation (e.g., using a large lepton asymmetry).
 - N_{eff} > 3 explained by some other physics (sub-eV thermal axions, hidden photons, etc.?)

Is there a way out?

- **Plan A**: Suppress sterile neutrino thermalisation (e.g., using a large lepton asymmetry).
 - N_{eff} > 3 explained by some other physics (sub-eV thermal axions, hidden photons, etc.?)

- Plan B: Failing to suppress v_s thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
 - Some known degeneracies:

Either way new physics is required...

	Even more the massless spec	Even more thermalised massless species			Non-standard dark energy equation of state		
Framework	Neutrino sector	$\Delta\chi^2_{ m eff}$	$\Delta N_{ m ml}$	w	$\omega_{ m cdm}$		
ΛCDM	3 massless	0	-	—	$0.1132\substack{+0.0036\\-0.0082}$		
Best-fit	3 massless + 1 sterile (0 eV)	-3.16	_	_	$0.1299\substack{+0.0069\\-0.0066}$		
	3 massless + 1 sterile (1 eV)	4.20	_	—	$0.1398^{+0.0061}_{-0.0074}$		
	3 massless + 1 sterile (2 eV)	21.41	_	—	$0.1473^{+0.0075}_{-0.0064}$		
$\Lambda CDM + \Delta N$	$3+\Delta N_{ m ml}$ massless + 1 sterile (0 eV)	-3.54	$0.01\substack{+1.12\-0.01}$	—	$0.133\substack{+0.023\\-0.005}$		
	$3+\Delta N_{ m ml}$ massless + 1 sterile (1 eV)	2.26	$1.49^{+1.11}_{-0.73}$	_	$0.166\substack{+0.026\\-0.017}$		
	$3+\Delta N_{\rm ml} \text{ massless} + 1 \text{ sterile (2 eV)}$	12.82	$2.57^{+1.24}_{-0.59}$	—	$0.192^{+0.031}_{-0.015}$		
w CDM+ ΔN	$3+\Delta N_{ m ml}$ massless + 1 sterile (0 eV)	-5.38	$0.09\substack{+1.61\-0.09}$	$-1.00\substack{+0.18\\-0.12}$	$0.132\substack{+0.032\\-0.006}$		
	$3+\Delta N_{\rm ml}$ massless + <u>1 sterile (1 eV)</u>	-0.78	$1.23\substack{+1.61\\-0.75}$	$-1.11\substack{+0.18\\-0.21}$	$0.164\substack{+0.035\\-0.015}$		
	$3+\Delta N_{ m ml}$ massless + 1 sterile (2 eV)	7.80	$2.48^{+1.71}_{-0.79}$	$-1.17\substack{+0.23\\-0.22}$	$0.198\substack{+0.032\\-0.019}$		

- CMB+LSS can reasonably accommodate 1 x 1 eV sterile neutrinos if we modify the dark energy sector and put in extra massless d.o.f.
- 1 x 2 eV is still problematic...

Planck and N_{eff} ...

 The question of whether N_{eff} ~ 4 will be settled almost immediately by Planck (launched May 14, 2009; public data early 2013).

Experiment	$f_{ m sky}$	θ_b	$w_T^{-1/2}$	$w_{P}^{-1/2}$	$\Delta N_{ u}$	$\Delta N_{ u}$	ΔN_{ν} (free Y)
			$[\mu K']$	[µ K']	\mathbf{TT}	TT+TE+EE	TT+TE+EE
Planck	0.8	7'	40	56	0.6	0.20	0.24
ACT	0.01	1.7'	3	4	1	0.47	0.9
ACT + Planck					0.4	0.18	0.24
CMBPOL	0.8	4'	1	1.4	0.12	0.05	0.09

Bashinsky & Seljak 2004

Helium fraction as a free parameter

Summary...

- Precision cosmology constrains sum of neutrino masses to < 1 eV.
 - Will do even better in the future.
- Current precision cosmological data show a preference for extra relativistic degrees of freedom (beyond 3 neutrinos).
 - Sterile neutrino interpretation of reactor/MiniBooNE/LSND anomalies does not quite fit into the simplest picture...
 - 3+2: Too many for BBN
 - 3+1, 3+2: **Too heavy** for CMB/LSS
 - Non-trivial extensions to Λ CDM can alleviate the tension somewhat.
 - Planck with tell!