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Probe 1: Cosmic microwave background anisotropies...

Many probes:

● > 0.5 deg: COBE, WMAP, 
Planck

● < 0.5 deg: DASI, CBI, 
ACBAR, Boomerang, VSA, 
QuaD, QUIET, BICEP, ACT, 
SPT, etc.

NASA/WMAP science team
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Probe 2: Large-scale structure (LSS) distribution...

Galaxy clustering

Gravitational 
lensing

Cluster abundance

Intergalactic
hydrogen clumps; 
Lyman-α

Matter power spectrum

Tegmark et al., 2002



  

Probe 3: Standard candles (distance vs redshift)...

Type Ia supernova (SNIa).

● Objects of known luminosity.

● Hubble diagram of SNIa measures 
luminosity distance vs redshift.

Riess et al., 2007



  

Probe 4: Standard rulers (distance vs redshift)...

Baryon acoustic oscillation (BAO) peak
Measured by SDSS

● Objects of known physical 
size.

● BAO peak sourced by the 
same physics as CMB 
acoustic peaks 

      → Position of peak in 2-point   
           correlation of the matter      
           distribution is known.

● Measures angular diameter 
distance vs redshift.

Eisenstein et al., 2005
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The concordance flat ΛCDM model...

13.4 billion years ago
(at photon decoupling)

Composition today

● The simplest model consistent with present observations.

Massless
Neutrinos
(3 families)

Plus flat spatial geometry+initial conditions 
from single-field inflation

ν-to-γ energy density 
ratio fixed by SM physics

Cosmological 
constant



  

● Neutrino decoupling at T ~ O(1) MeV.

● After e+e- annihilation (T ~ 0.2 MeV):

– Temperature:

– Number density per flavour:

– Energy density per flavour:

● If massive, then at T << m:

Neutrino energy density (standard picture)...
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ρν=mνnν Ων ,0h
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Hot dark matter (not within vanilla ΛCDM)

3ρν
ργ ∼0.68

Fixed by weak interactions

Assuming instantaneous 
decoupling



  

● Constraining/measuring neutrino masses from cosmology.

● Hint of sterile neutrinos from the CMB?

Plan...



  

Part 1: 
Neutrino masses from cosmology



  

● If m
ν
 > 1 meV, cosmological neutrinos are nonrelativistic today.

● Predictions based on laboratory limits:

– Neutrino oscillations:

– Tritium beta decay:

Neutrino dark matter...

Ων ,0h
2=∑ mν

94 eV

min∑mν∼0.05 eV→minΩν∼0.1

max∑mν∼7 eV→maxΩν∼12

Total neutrino 
energy density

m
ν
 > T

ν
  ~ 10-4 eV

Neutrino dark matter

Neutrinos cannot make up all of the 
dark matter content in the universe



  

● Neutrino dark matter comes with significant “thermal” motion.

● Free-streaming                                                                          
length scale    
& wavenumber:

Neutrino hot dark matter...

c

ν ν

c

FS≡ 82c
2

3 mH
2
≃4.2  1z

m,0  eV
m
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k FS≡
2
FS
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≫FS

k≪k FS
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≪FS

k≫k FS
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Gravitational
potential wells

Thermal speed
Hinders clustering
on small scales

z = redshift



  

● In turn, free-streaming (non-clustering) neutrinos slow down the growth of 
gravitational potential wells on scales λ<< λFS or wavenumbers k >> kFS.

c

ν

c

c ν

ν

c

c cν ν c ν

Clustering → potential 
wells become deeper

Some time later...

Only CDM 
clusters

Both CDM and
neutrinos cluster

ν



  

● The presence of Hot Dark Matter slows down the growth of Cold Dark 
Matter perturbations at large wavenumbers k.

|δcdm| |δcdm|

CDM-only universe

A Cold+Hot DM universe

k k

Initial time... Some time later...

kFS(z=z
nr
)

Redshift at which neutrinos 
become nonrelativistic

Perturbation wavenumber

Perturbation spectrum
(depth of “potential wells”)

Small length scalesLarge length scales



  

CMB Galaxy 
clustering 
surveys

Lyman-α

 h
2=∑ m

93 eV

fν = Neutrino 
fraction

 P
P
∝8 f ≡8



m

La
rg

e
 s

ca
le

 m
at

te
r 

po
w

e
r 

sp
e

ct
ru

m
, P

(k
)



  

CMB

Lyman-α

 h
2=∑ m

93 eV

fν = Neutrino 
fraction

Galaxy 
clustering 
surveys
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CMB

Lyman-α

 h
2=∑ m

93 eV

Galaxy 
clustering 
surveys

 P
P
∝8 f ≡8
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● Present constraints come 
mainly via the early ISW 
effect:

– γ decoupling: T ~ 0.26 eV.
– Equality at T ~ 1 eV. 

● A O(0.1-1) eV neutrino 
becomes nonrelativistic in the 
same time frame.

   

Neutrino effects on the CMB anisotropies...

∑ m1.3 eV95%C.I.

Komatsu et al. 2010, Hannestad et al. 2010

WMAP7 only (ΛCDM+m
ν
):

∑ m=3×0.4eV=1.2 eV

∑ m=0

CMB = Minimal nonlinear physics



  

Present constraints...

∑ mν<0.44→0.76 eV (95CI)

Hannestad, Mirizzi, Raffelt & Y3W 2010
Gonzalez-Garcia et al. 2010, etc.

CMB (WMAP7+ACBAR+BICEP+QuaD)
+ LSS (SDSS-HPS)
+ HST+SNIa

depending on the model complexity

Includes uncertainties in
● Number of neutrinos
● Dark energy equation of state
● Inflation physics 
  (tensors, running spectral index)
● Spatial curvature



  

Present constraints and future sensitivities...

∑ mν<0.44→0.76 eV (95CI)

∑ mν<0.38→0.84 eV (95CI)

∑ mν<0.074→ 0.086eV (95CI)

Hannestad, Mirizzi, Raffelt & Y3W 2010
Gonzalez-Garcia et al. 2010, etc.

CMB (WMAP7+ACBAR+BICEP+QuaD)
+ LSS (SDSS-HPS)
+ HST+SNIa

Planck alone (1 year)      2012–2013

Planck+Weak lensing (LSST)     2020+

depending on the model complexity

Perotto et al. 2006

Hannestad, Tu & Y3W 2006

Minimal nonlinear physics

Nonlinear physics
involved



  

Part II:
 Hint of sterile neutrinos 

from the CMB?



  

Experimental anomalies & the sterile ν interpretation... 

● Experiments at odds with the standard 3-neutrino interpretation of 
global neutrino oscillation data:

– LSND (ν
e
 appearance)

– MiniBooNE anti-neutrinos (ν
e
 appearance)

– Short baseline reactor experiments (re-evaluation of neutrino 
fluxes) (ν

e
 disappearance)

● If interpreted as oscillation signals → a 4th (or more) sterile neutrino 
with Δm2 ~ O(1 eV2).

Sterile = does not violate 
LEP bound on Z decay width



  

● Best-fits parameters: Kopp, Maltoni & Schwetz 2011

Experimental anomalies & the sterile ν interpretation... 

Reactor experiments only Global short baseline
(including LSND+MiniBooNE)

“3+1” “3+2” “1+3+1”

ν
e
 ν

μ
 ν

τ

ν
s



  

Di Bari, Lipari & Lusignoli 2000

Δ N eff=0.1

0.3
0.5

0.7
0.9

νμ↔νs

ms<mμ
ms>mμ

Impact of light (eV mass) sterile ν on cosmology...

● Preferred Δm2 and mixing → 
thermalisation of sterile neutrino 
state prior to neutrino decoupling.

      → Excess relativistic energy           
             density.

ρν+ρX=N eff (78 π
2

15
T ν

4)
=(3.046+Δ N eff )(78 π

2

15
T ν

4)

Neutrino 
temperature
per definition

CMB, large-scale structure, BBN
Observables



  

Impact of light (eV mass) sterile ν on cosmology...

● Preferred Δm2 and mixing → 
thermalisation of sterile neutrino 
state prior to neutrino decoupling.

      → Excess relativistic energy           
             density.

ρν+ρX=N eff (78 π
2

15
T ν

4)
=(3.046+Δ N eff )(78 π

2

15
T ν

4)
CMB, large-scale structure, BBN

Observables

● If the sterile neutrino is 
sufficiently massive → 
hot dark matter. 

Ωsh
2=

ms
94 eV

CMB, large-scale structure

Neutrino 
temperature
per definition



  

2a. CMB+LSS



  

● Recent CMB+LSS data appear to prefer N
eff

 > 3!

Dunkley et al. [Atacama Cosmology Telescope] 2010 Keisler et al. [South Pole Telescope] 2011

WMAP+ACT

WMAP+ACT+H
0
+BAO

WMAP
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Evidence for N
eff 

> 3 from CMB+LSS...



  

● Trend since WMAP-1.

● Exact numbers depend on the 
cosmological model and the 
combination of data used.

● Simplest model (vanilla 
ΛCDM+N

eff
):  

– Evidence for N
eff

 > 3 @ 98.4% 
(WMAP7+ACT+ACBAR+H

0
+

BAO).
Hou, Keisler, Knox, et al. 2011

Adapted from S. Hannestad

Evidence for N
eff 

> 3 from CMB+LSS...



  

● Looks easy...  but we also use the same data to measure at least 6 other 
cosmological parameters: 

How it works...

(Ωbh
2 ,Ωm h

2 , h , ns , As , τ)

CMB TT

(Keeping other
parameters fixed)



  

N
eff

 effects on the CMB...

● Matter-radiation equality (first 
peak height relative to plateau)

● Sound horizon/angular positions 
of peaks

● Anisotropic stress

● Damping tail

How it works: parameter degeneracies...

Degeneracies...

● Matter density

Early ISW
effect

Redshift of equality

1+ zeq=
Ωm

Ωr
≈
Ωm h

2

Ωγh
2

1
1+0.2271 N eff



  

How it works: parameter degeneracies...

Degeneracies...

● z
eq

 affects the sound horizon: degenerate with baryon and DM densities.

● Angular positions depend on distance to LSS and hence on DE density.

N
eff

 effects on the CMB...

● Matter-radiation equality (first 
peak height relative to plateau)

● Sound horizon/angular positions 
of peaks

● Anisotropic stress

● Damping tail



  

How it works: parameter degeneracies...

Degeneracies...

● Anisotropic stress; damps oscillations at l > 200.

● Partially degenerate with primordial fluctuation amplitude.

N
eff

 effects on the CMB...

● Matter-radiation equality (first 
peak height relative to plateau)

● Sound horizon/angular positions 
of peaks

● Anisotropic stress

● Damping tail Free-streaming 
particles



  

Komatsu et al. [WMAP5] 2008

● Measurement of the anisotropic stress (since WMAP-5) gives lower limit 
on N

eff
 from CMB alone (without supplementary large-scale structure 

data).

● Upper limit (pre 2010) requires combination with other observations 
(LSS, HST, SN) sensitive to the matter density and the expansion rate... 

OR...



  

How it works: parameter degeneracies...

Degeneracies...

● N
eff

 → higher expansion rate → more Silk damping.

● Some degeneracy with the Helium fraction.

N
eff

 effects on the CMB...

● Matter-radiation equality (first 
peak height relative to plateau)

● Sound horizon/angular positions 
of peaks

● Anisotropic stress

● Damping tail



  Hou, Keisler, Knox et al. 2011

- Matter-radiation equality
- Baryon density
- Sound horizon
fixed to agree with WMAP

Different N
eff 

visible 
in the damping tail
(probed by ACT & SPT
and Planck)

Degeneracy with 
the helium fraction
is not exact
→ Can be resolved
with Planck

● N
eff

 and the CMB damping tail:



  

2b. BBN



  

● Light element abundances are sensitive to excess relativistic energy 
density.

Hamann, Hannestad, Raffelt & Y3W 2011

Evidence for N
eff 

> 3 from BBN...

Baryon 
density

Effective number of
sterile neutrinos

Using CMB prior on ω
b

N eff=3.046+N s

Deuterium

Helium-4

Pettini et al. 2008

log [D /H ]p=−4.55±0.03

Y p=0.2573−0.0088
+0.0033

Aver, Olive & 
Skillman 201199%

90%

τn=878.5s
τn=885.7s



  

● Mild preference for N
eff

 > 3 (or N
s
 > 0) from Deuterium+Helium-4.

● But N
s
 = 2 is strongly disfavoured. 

Evidence for N
eff 

> 3 from BBN...

τn=878.5s
τn=885.7s

+ CMB prior on
baryon density

Hamann, Hannestad, Raffelt & Y3W 2011



  

● Introduce a neutrino chemical potential (= O(0.1) lepton asymmetry).

● Then even N
s
 = 3 is allowed by BBN.

Quick fix: degenerate BBN...

Hamann, Hannestad, Raffelt & Y3W 2011

Lepton asymmetry

Question: How to simultaneously
get L = O(0.1) and B = O(10-10)?

L≡
nνα−n ν̄α
nγ

= 1
12ζ(3) (T ν

T γ )
3

(π2ξ+ξ3)

Neutrino chemical potential

99%

90%



  

2c. Implications for the 
LSND/MiniBooNE/reactor ν

s



  

● 3+1 thermalised sterile:

● 3+2 thermalised sterile:

Hamann, Hannestad, Raffelt, Tamborra & Y3W  2010

CMB+SDSS7+HST

68%

95%

99%

Number of sterile neutrinos

M
as

s 
of
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ac

h 
st
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ile
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eu
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o 
[e

V
]

ms0.48 eV 95%C.I.

ms1ms20.9 eV 95%C.I.

ms~1 eV

ms1∼0.7 eV , ms2∼0.9 eVLab best-fit:

Lab best-fit:

Can the reactor/MiniBooNE sterile ν explain N
eff 

> 3?

● Short answer: Not so easy.

● Reason: eV mass sterile neutrinos violate CMB+LSS ν mass bounds.

ΛCDM+N
eff

+m
s



  

● Plan A: Suppress sterile neutrino thermalisation (e.g., using a large lepton 
asymmetry).

– N
eff

 > 3 explained by some other physics (sub-eV thermal axions, 
hidden photons, etc.?)

 

Is there a way out?



  

● Plan A: Suppress sterile neutrino thermalisation (e.g., using a large lepton 
asymmetry).

– N
eff

 > 3 explained by some other physics (sub-eV thermal axions, 
hidden photons, etc.?)

● Plan B: Failing to suppress ν
s
 thermalisation, exploit parameter 

degeneracies in the CMB+LSS to engineer a good fit.

– Some known degeneracies:

● Neutrino mass ↑ – Extra massless degrees of freedom ↑ 
● Neutrino mass ↑ – Dark energy EoS parameter w ↓ 

 

Is there a way out?

Either way new physics is required...



  

● CMB+LSS can reasonably accommodate 1 x 1 eV sterile neutrinos if we 
modify the dark energy sector and put in extra massless d.o.f.  

● 1 x 2 eV is still problematic...

Hamann, Hannestad, Raffelt & Y3W  2011
also Elgarøy & Kristiansen 2011

Even more thermalised
massless species 

Non-standard dark energy 
equation of state

Best-fit



  

Planck and N
eff

...

Bashinsky & Seljak 2004
Helium fraction
as a free parameter

● The question of whether N
eff

 ~ 4 will be settled almost immediately by 
Planck (launched May 14, 2009; public data early 2013).



  

● Precision cosmology constrains sum of neutrino masses to < 1 eV.

– Will do even better in the future.

● Current precision cosmological data show a preference for extra 
relativistic degrees of freedom (beyond 3 neutrinos).

– Sterile neutrino interpretation of reactor/MiniBooNE/LSND anomalies 
does not quite fit into the simplest picture...

● 3+2: Too many for BBN 

● 3+1, 3+2: Too heavy for CMB/LSS

– Non-trivial extensions to ΛCDM can alleviate the tension somewhat.

– Planck with tell!

Summary...
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