COSMIC CLUES FOR DARK MATTER

DIRECT, INDIRECT AND LHC DETECTION UPDATE

KATHRYN M. ZUREK

Sunday, October 5, 14

UNIVERSE'S ENERGY BUDGET

New Dynamics, Definitely BSM

• We have essentially eliminated a SM explanation; need physics BSM

- Why not just ordinary (dark) baryons?
- A: BBN and CMB make independent measurements of the baryon fraction. Observations only accounted for with **non-interacting** matter

- Why not just ordinary (dark) baryons?
- A: BBN and CMB make independent measurements of the baryon fraction. Observations only accounted for with **non-interacting** matter

•

- Make baryons non-interacting by binding DM into MaCHOs?
- A: looked for those and did not find them; eliminated MACHO range from $\gtrsim 10^{-8} M_{\odot}$

Afshordi, McDonald, Spergel

- Make baryons non-interacting by binding DM into MaCHOs?
- A: looked for those and did not find them; eliminated MACHO range from $\gtrsim 10^{-8} M_{\odot}$

- Why not modify gravity?
- A: Modified gravity theories tend to be sick

 A: Must get the entire range of observations right, not just galactic rotation curves

- Why not modify gravity?
- A: Modified gravity theories tend to be sick

X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al

A: Must get the entire range of observations right, not just galactic rotation curves

- By contrast, it is easy to explain everything with particle dark matter
- From theoretical point of view, theories are compelling, testable.
- As the proverb says:

WHAT DO WE KNOW ABOUT THE DARK MATTER?

Sunday, October 5, 14

HOW DARK IS DARK MATTER?

HOW DARK IS DARK MATTER?

• Which probe is the most constraining?

Constraint on DM charge ɛ

SUPER-WEAKLY INTERACTING

• Gravitational Coherence

... on cosmological scales!

- Helps us learn about aggregate properties of dark matter
- Particle properties much harder

SUPER-WEAKLY INTERACTING

 $M_p \sim 1 {
m GeV}$

Standard Model

 Astronomy and Cosmology can give aggregate properties, but we need particle physics to go beyond that

Dark Matter

PARTICLE PHYSICS PROVIDES SOME IDEAS

Sub-weak Interactions

 $M_p \sim 1 \,\,{\rm GeV}$

Standard Model

Weak Interactions

 Fundamental premise: DM has interactions other than gravitational

Dark Matter

WHY THE (SUB-)WEAK SCALE IS COMPELLING

• Abundance of new stable states set by interaction rates

Freeze-out

IDEA FOCUS: SUPERSYMMETRY

- Provides sharp predictions
- Must be neutral.
- Options sneutrino, bino, wino, higgsino $\tilde{\nu}$ \tilde{B} , \tilde{W}_3 , \tilde{H}
- Sneutrino scatters through Z
- Neutralino scattering through Z spindependent or velocity suppressed

SUB-WEAKLY INTERACTING MASSIVE PARTICLES

 $\sigma_n \sim 10^{-45-46} \ {\rm cm}^2$

Next important benchmark: Scattering through the Higgs

ARE THERE WAYS AROUND FOR THE NEUTRALINO?

- Make the Neutralino a pure state -- coupling to Higgs vanishes
- However, Wino and Higgsino pure states can be probed by indirect detection

ARE THERE WAYS AROUND FOR THE NEUTRALINO?

- Make the Neutralino a pure state -- coupling to Higgs vanishes
- However, Wino and Higgsino pure states can be probed by indirect detection

Ovaneysan, Slatyer, Stewart '14

ARE THERE WAYS AROUND FOR THE NEUTRALINO?

- Tune away the coupling to the Higgs
- Smaller cross-sections correspond to more tuning in the neutralino components

\mathbf{m}_{χ}	condition
M_1	$M_1 + \mu \sin 2\beta = 0$
M_2	$M_2 + \mu \sin 2\beta = 0$
$-\mu$	$\tan\beta = 1$
M_2	$M_1 = M_2$

Cheung, Hall, Pinner, Ruderman

WHEN SHOULD WE START LOOKING ELSEWHERE?

- Cannot kill neutralino DM, but paradigm does become increasingly tuned
- Somewhat below Higgs pole --Neutrino background?
- Well-motivated candidates that are much less costly to probe
- Light WIMPs

TERRA INCOGNITA

CF1 Snowmass report, 1310.8327

BARYON AND DM NUMBER RELATED?

- Standard picture: freeze-out of annihilation; baryon and DM number unrelated
- Accidental, or dynamically related?

CHEMICAL POTENTIAL DARK MATTER

Matter Anti-matter

Matter Anti-Matter

Visible

Dark

ASYMMETRIC DM

Energy

ASYMMETRIC DARK MATTER

Anti-matter Matter

Matter Anti-Matter

Visible

Dark

ASYMMETRIC DARK MATTER

Visible

Dark

ASYMMETRIC DARK MATTER

DARK FORCES AND DM INTERACTIONS

- Dark Forces Very Important for Asymmetric Dark Matter!
- May also be important for structure of DM halos
- May be important for DM direct detection and collider searches

LOW ENERGY ACCELERATOR CONSTRAINTS

Sunday, October 5, 14

l+

TRANSLATE TO DIRECT DETECTION

Sunday, October 5, 14

l+

THE LAMPPOST PROBLEM

 Great ideas! But are we too restricted by them?

Galactic Center Excess PAMELA Fermi positron

• How can we be ready for anything?

TERRA INCOGNITA

TERRA INCOGNITA

LOW MASS DM CONSTRAINED BY ASTRO

objects like supernovae may be produced inside object.

Cooling constraints places tight bounds

MAP INTO DIRECT DETECTION PLANE

Projected maximum sensitivity of direct detection experiment

Cut-out gives combined constraints of beam dump + supernova + g-2

THE ROAD AHEAD

- Direct Detection experiments will continue to probe down to Higgs mediated scattering
- Higgs pole will be covered within 5 10 years

$$\sigma_n \sim 10^{-45-46} \ {\rm cm}^2$$

THE ROAD ÅHEAD

- Direct Detection experiments will continue to probe Higgs mediated scattering
- Higgs pole largely covered within 5 -10 years

 $\sigma_n \sim 10^{-45-46} \ {\rm cm}^2$

THE ROAD ÅHEAD

- PAMELA / Fermi / AMS and cosmic ray positrons
- Fermi photons
- Data rich! Many experiments collecting data

Ovaneysan, Slatyer, Stewart '14

THE ROAD AHEAD

- Higgs discovered
- Many models covered
- Many models still buried → theoretical and model input

All limits guoted are observed minus 1 or theoretical signal cross section uncertainty

NEW THEORETICAL LANDSCAPE

Our theoretical tools have broadened

Standard Model

From a single, stable weakly interacting particle (WIMP, axion)

> Models: Supersymmetric light DM sectors, Secluded WIMPs, WIMPless DM, Asymmetric DM Production: freeze-in, freeze-out and decay, asymmetric abundance, non-thermal mechanicsms

...to a hidden world with multiple states, new interactions