Challenges and Opportunities in Understanding Neutrino Properties with Accelerator-based Experiments

Xin Qian BNL

Outline

- Motivation
- Opportunities of future generations of experiments
- Challenges and Solutions
 - Neutrino Flux
 - Neutrino Detection
- Summary

Neutrino Mass and Mixing: the only well-established new physics been added to the Standard Model $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\delta_1} & 0 & 0 \\ 0 & e^{i\delta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 0νββ $\Delta m_{32}^2 \sim 2.4 \times 10^{-3} eV^2 \qquad \Delta m_{31}^2 \sim 2.4 \times 10^{-3} eV^2 \qquad \Delta m_{21}^2 \sim 7.5 \times 10^{-5} eV^2$ $θ_{23} \sim 45^{\circ}$ $θ_{13} \sim 9^{\circ} \delta = ???$ $θ_{12} \sim 34^{\circ}$

Accelerator experiments provide crucial inputs:

- Discovery of muon and tau neutrinos
- Confirm atmospheric v oscillation, the most precise $|\Delta m^2_{32}|$
- First observation of appearance, confirm "large" θ_{13}
- Initial hints of leptonic CP violation together with reactor v

Some Remaining Questions

- CP violation in the neutrino sector?
- Normal or Inverted Mass Hierarchy?
- Octant:
 v_µ >? | =? | <? v_τ in v₃
- Dirac or Majorana Neutrinos?
- $\nabla_{e} \qquad \nabla_{\mu} \qquad \nabla_{\tau}$ Normal $\int_{\alpha}^{\alpha} \int_{\alpha}^{\alpha} \int_{\alpha}^{\alpha} \int_{\alpha}^{\nu_{2}} \nabla_{1}$ Δm_{atm}^{2} $\int_{\nu_{1}}^{\nu_{2}} \int_{\alpha}^{\alpha} \int_{\alpha}^{\alpha} \Delta m_{sol}^{2}$ $\int_{\mu_{i}}^{\mu_{i}} \int_{\alpha}^{\nu_{i}} \nabla_{2}$

Neutrino Mass Hierarchy

- Is PMNS matrix unitary?
- What is the absolute neutrino mass?
- Any pattern in PMNS matrix?

Search for new CP violation

- Charge-Parity (CP) Violation in neutrino sector
 - Crucial for leptogenesis models to explain the large matter-anti-matter asymmetry in the universe
 - J_{CP} is expected to be sizable, as δ_{CP} naturally links to the CP phase of very heavy "see-saw" partner

Model calculation(See-saw type I) $|\sin \theta_{13} \sin \delta| > 0.11$

Pascoli, Petcov, Riotto PRD75, NPB774, (2007)

Mass Hierarchy

 If inverted hierarchy, planning next-generation discovery-level neutrino-less double beta decay (0vDBD)
 becomes clear

$$\theta_{23} = 45^{\circ} + \sqrt{2}\theta_{13}\cos\delta$$
$$\theta_{23} = 45^{\circ} - \frac{1}{\sqrt{2}}\theta_{13}\cos\delta$$
$$\theta_{12} = 35^{\circ} + \theta_{13}\cos\delta$$
$$\theta_{12} = 32^{\circ} + \theta_{13}\cos\delta$$
$$\theta_{12} = 45^{\circ} + \theta_{13}\cos\delta$$

Important input for model building to explain neutrino mass and mixing (also precision measurements of neutrino mixing)

Accelerator v_e Appearance

• Oscillation pattern are very sensitive to the value of δ_{CP} , the mass hierarchy, θ_{13} , θ_{23} (Octant), and Δm_{32}^2 (5/7) • Unique opportunity to search for CP violation

 $\pi^+ \rightarrow \mu^+ + \nu_\mu (\sim 100\%)$ $K^+ \rightarrow \mu^+ + \nu_\mu (\sim 63\%)$ $\mu^{+} \rightarrow e^{+} + v_{e} + \overline{v}_{\mu} (\sim 100\%)$ $K^+ \rightarrow \pi^0 e^+ v_e (\sim 5\%)$

- Far Detector to measure • **Neutrino Oscillation**
- Near Detector to categorize Neutrino beam

Recent Accelerator Neutrino Beams

Recent Experiments

Exp.	Beam	Neutrino Energy (GeV)	Proton Power (MW)	Detector Technology	Detector Weight (kt)	Baseline (km)
<u>K2K</u>	KEK-PS	<u>0.3-2.7</u>	<u>0.01-0.02</u>	<u>Water</u>	<u>50</u>	<u>250</u>
<u>MINOS</u>	<u>NUMI</u>	<u>1.0-12</u>	<u>0.4</u>	<u>Steel</u> Scintillator	<u>5.4</u>	<u>735</u>
OPERA	CNGS	5-30	0.5	Lead Emulsion	1.8	732
ICARUS	CNGS	5-30	0.5	Lar-TPC	0.6	732
MiniBooNE	BNB	< 2	0.04	Mineral Oil	0.8	0.54
<u>T2K</u>	J-PARC	<u>0.3-1.5</u>	<u>0.75</u>	<u>Water</u>	<u>50</u>	<u>295</u>
NOVA	<u>NUMI</u>	<u>1.0-3.0</u>	<u>0.7</u>	<u>Liquid</u> <u>Scintillator</u>	<u>15</u>	<u>810</u>
MicroBooNE	BNB	< 2	0.04	Lar-TPC	0.08	0.47

First and Second Generation Oscillation Experiments since 98' **Long-Baseline Experiments** 10

Expected Reach of T2K/Nova

arXiv:1409.7469

Future Experiments

Exp.	Beam	Energy (GeV)	Power (MW)	Detector Technology	Detector Weight (kt)	Baseline (km)
Hyper-K	J-PARC	0.3-1.5	>0.75	Water	1000	295

Hyper-Kamiokande with J-PARC neutrino beam

Y. Hayato Neutrino 2014

J-PARC Main Ring Neutrino beamline (KEK – JAEA)

Future Experiments

Future Experiments

Exp.	Beam	Energy (GeV)	Power (MW)	Detector Technology	Detector Weight (kt)	Baseline (km)
LBNE	FNAL	0.5-5.0	1.2-2.3	Single Phase LAr-TPC	35-70	1300

FNAL Short Baseline Neutrino Program: (MicroBooNE) + LAr1-ND, ICARUS-T600 → Continuous LArTPC R&D

14

CPV and MH

Outline

- Motivation for Accelerator Experiments
- Current and future generations of experiments
- Challenges and Solutions
 - Neutrino Flux

Neutrino Detection
LAr TPC
Water Cerenkov Detector
v-A Cross section

Summary

Challenge I: Experiment Scale

 Next generation accelerator-based experiments aim at 1-2 order increase in the overall exposure underground (Water + LArTPC)
 500-1000 people ~ 1 B\$ scale

Challenge II: MW-power Beam

- High-quality beam to injector
- Accelerating high current beam to high energy

 Low beam loss during transportation

 MW-power is crucial to reach required statistics for long-baseline accelerator experiments

Challenge II: MW-power Beam

- Challenges:
 - Thermal shock
 - Remote handling
 - Cooling
 - Radiation protection
 - Design of beam window, target, horn
 - Radiation damage

 Robust target and horn system for extreme power densities and extreme radiation

Challenge III: Categorization of Neutrino Beam

 v_{μ} flux is crucial to signal, v_{e} flux is irreducible background It is crucial to categorize neutrino fluxes with near detector(s)

Outline

- Motivation for Accelerator Experiments
- Current and future generations of experiments
- Challenges and Solutions

- Neutrino Flux

- Neutrino Detection
 - LAr TPC
 - Water Cerenkov Detector
 - v-A Cross section

Summary

Excellent new opportunity with high res. LArTPC

- Argon: most abundant noble gas (1.3% by weight)
- Electron drift v: 1.6 km/s
- Position resolution ~ mm
- PID: dE/dx through charge collection + event topology

- stopping muon 1% momentum resolution
- 16% with multiple scattering
- 20 MeV resolution for π⁰ mass

Challenge: LAr Purity iii) Electron lifetime: collected charge

- Ionized electron collide 10¹² times every second
- Within the ~ ms drift time, if electron collides with an impurity and get attached, we lose it

$$Q_{collect} = Q_{drift} \cdot e^{-t_{drift}/T_{lifetime}}$$

- ICARUS reached 12 ms electron lifetime
- Expect longer electron lifetime in MicroBooNE

Challenge: Detector Size

Volume: 15m x 24m x 49m x 2 Total Liquid Argon Mass: ~50,000 tonnes Fiducial Mass for v Physics: ~35,000 tonnes

installation of APAs inside the crypstat

cross section view of the TPC componets inside the cryostat

Modular design is the key!

Importance of going/being Underground

backgrounds as well as space charge

Enable proton decay, atmospheric neutrino oscillation, supernova v detection

WIPP

Soudan

(Chlorine)

Depth, meters water equivalent

 10^{3}

Kamioka

DUSL - Homestake

DUSL - Homestake (Deep Option)

Gran Sasso

Baksan

Mont Blanc

Sudbury

10⁴

Noise level is about half with cold electronics

Challenge: Event Reconstruction

- Use a well-defined charged particle beam to study LAr TPC
 - Single particle tracks
 - E&M Shower
 - Hadronic Shower

Test Beam Experiments

- Lariat (FNAL)
 WA105 (CERN
- WA105 (CERN)
- Captain Energy response to neutrons

Challenges in Double-Phases LArTPC

- Higher Gain, larger fiducial mass,
- GEM readout → ultimate 3D imaging
- HV (~10⁶ V) and ultra LAr purity is required for 20 m drift distance
- Light collection: short Raleigh scattering length and light detector placement
- GEM gain uniformity
- Active R&D ongoing

Cost effective for large mass, cheaper than LAr Focusing on lepton detect., lower efficiency than LAr at high E_v

π⁰ background

π^0 Fitter

- Assumes two electron-like rings produced at a common vertex
- 12 parameters (single track fit had '7)
 - Vertex (X, Y, Z, T)
 - Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
 - Momenta (p₁, p₂)
 - Conversion lengths (c_1, c_2)
- All 12 parameters are varied simultaneously
- 1.26 NC π⁰ backgrounds 70% removed with new alg.
- Observed 28 events

Good role model for the LArTPC reconstruction development

Time (No Log Scale)

 Understanding Neutrino Interaction (<u>nuclear</u> <u>effect</u>) is crucial for the oscillation experiments

Neutrino energy reconstruction + normalization

Rapid Progresses

- Experiments:
 - Bubble chamber exp. (ANL/BNL) → MiniBooNE, Argoneut, Minerva, T2K-ND, MicroBooNE …
- Event Generator:
 - GENIE, NEUT, GIBUU, NuWro ...
 - Validation with electron scattering data from (SLAC, MIT-Bates, JLab ...)
- Future measurements:
 - Low-nu method +
 Fine Grain Tracker (LBNE)
 - nuPRISM Concept

Summary

- Accelerator-based neutrino experiments will continue to deliver high-quality physics results
 - Determination of the MH will aid planning neutrinoless double beta decay experiments
 - Establishment of lepton CPV will be revolutionary: possible explanation of matter dominance in universe
 - Excellent opportunities in FNAL, JPARC ...
- Scale of next-generation experiment is well-known, broad acceptance in the world, and within reach
 - There are various technical issues relating to the scale, but no show stopper
 - Issues on how to analyze data: increase signal efficiency, reduce backgrounds, keep systematics low is working out by the entire community

