Understanding Neutrino Properties with Reactors, Cyclotrons, and Radioactive Sources

International Workshop on "Double Beta Decay and Underground Science"

M. Toups, MIT 10/5/2014

Outline

- Neutrinos from Reactors, Cyclotrons, and Radioactive Sources
- Neutrino properties
 - Sterile neutrinos oscillations
 - Neutrino electron elastic scattering
- Conclusion

Outline

- Neutrinos from Reactors, Cyclotrons, and Radioactive Sources
- Neutrino properties
 - Sterile neutrinos oscillations
 - Neutrino electron elastic scattering
- Conclusion

Reactor \overline{v}_{e} Flux = Σ Fission Product β^{-} Decay Spectra

10/6/14

Cyclotron-produced π^+/μ^+ Decay-At-Rest (DAR) Neutrinos

10/6/14

Cyclotron-produced π^+/μ^+ Decay-At-Rest (DAR) Neutrinos

Cyclotron-produced Isotope DAR Neutrinos

Radioactive sources

 ^{51}Cr (τ =40 days)

Produced from thermal neutron capture on Cr enriched in ⁵⁰Cr

¹⁴⁴Ce-¹⁴⁴Pr (τ=411 days)

Produced via chemical extraction from spent nuclear fuel

Decay scheme of $\rm ^{51}Cr$ to $\rm ^{51}V$ through electron capture.

Mono-energetic 750 keV ν_e 90% of the time

Neutrino Source Characteristics Summary

- Produce low energy (<15 MeV) $ar{
 u}_e$ or u_e
 - Radioactive sources with suitable lifetimes lower in energy
- Artificial
 - Beam-off background subtraction
- Isotropic (flux falls as 1/L²)
 - Can be located within $\mathcal{O}(10\ m)$ of detector
- Intense fluxes:

Neutrino Source	Neutrino Flux (v/s)
Reactor	2x10 ¹⁷ per MW
Cyclotron (600 kW, 10 mA p)	9x10 ¹⁴
10 MCi ⁵¹ Cr	4x10 ¹⁷
75 kCi ¹⁴⁴ Ce- ¹⁴⁴ Pr	3x10 ¹⁵

Understanding Neutrino Properties

Reactor v's	Cyclotron DAR v's	Radioactive source v's
Sterile v searches	Sterile v searches	Sterile v searches
v-electron scattering	v-electron scattering	v-electron scattering
Coherent v-A scattering	Coherent v-A scattering	Coherent v-A scattering?
3v oscillation parameters	CP violation (π^+/μ^+ DAR)	Absolute neutrino masses
v Mass Ordering (hierarchy)	v-C, v-Ar cross sections	v Mass Ordering (hierarchy)

And much more not included in this list...

Understanding Neutrino Properties

Reactor v's	Cyclotron DAR v's	Radioactive source v's
Sterile v searches	Sterile v searches	Sterile v searches
v-electron scattering	v-electron scattering	v-electron scattering
Coherent v-A scattering	Coherent v-A scattering	Coherent v-A scattering?
3v oscillation parameters	CP violation (π^+/μ^+ DAR)	Absolute neutrino masses
v Mass Ordering (hierarchy)	v-C. v-Ar cross sections	v Mass Ordering (hierarchv)

I will not have time to talk about these...

Outline

- Neutrinos from Reactors, Cyclotrons, and Radioactive Sources
- Neutrino properties
 - Sterile neutrinos oscillations
 - Neutrino electron elastic scattering
- Conclusion

Reactor Neutrino Anomaly

Phys. Rev. D 83, 073006 (2011)

Very short baseline reactor experiments measure fewer neutrinos than predicted

--> Can be interpreted as oscillations into a sterile neutrino

Reactor Neutrino Anomaly

Phys. Rev. D 83, 073006 (2011)

Very short baseline reactor experiments measure fewer neutrinos than predicted

-> Can be interpreted as oscillations into a sterile neutrino

Deficits also observed from ν_e calibration sources

M. Toups--DBD2014

1. Light Sterile Neutrinos: A White Paper

K.N. Abazajian (UC, Irvine), M.A. Acero (Mexico U., CEN), S.K. Agarwalla (Valencia U.), A.A. Aguilar-Arevalo (Mexico U., CEN), C.H. Albright (Fermilab & Northern Illinois U.), S. Antusch (Basel U.), C.A. Arguelles (Lima, Pont. U. Catolica), A.B. Balantekin (Wisconsin U., Madison), G. Barenboim (Valencia U.), V. Barger (Wisconsin U., Madison) *et al.*. Apr 2012. 281 pp. FERMILAB-PUB-12-881-PPD

e-Print: arXiv:1204.5379 [hep-ph] | PDF

<u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>EndNote</u> <u>CERN Document Server</u> ; <u>ADS Abstract Service</u>

Detailed record - Cited by 205 records 100+

Experiment	ν Source	ν Source ν Type	
CeLAND [259]	144 Ce- 144 Pr	$ar{ u}_e$	disapp.
Daya Bay Source 260	144 Ce- 144 Pr	$ar{ u}_e$	disapp.
SOX [261]	$^{51}{ m Cr}$ $ u_e$		disapp.
	144 Ce- 144 Pr	$ar{ u}_e$	disapp.
BEST 64	$^{51}\mathrm{Cr}$	$ u_e$	disapp.
PROSPECT [262]	Reactor	$\bar{ u}_e$	disapp.
STEREO	Reactor	$ar{ u}_e$	disapp.
DANSS 263	Reactor	$ar{ u}_e$	disapp.
OscSNS 205	π -DAR	$ar{ u}_{\mu}$	$\bar{\nu}_e$ app.
LAr1 264	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e} \mathrm{app.}$
LAr1-ND [264]	$\pi ext{-DIF}$	$\stackrel{\scriptscriptstyle(-)}{\pmb{ u}_{\pmb{\mu}}}$	$\stackrel{\scriptscriptstyle (-)}{\nu_e} \mathrm{app.}$
MiniBooNE+ 203	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e}{}\mathrm{app.}$
MiniBooNE II [265]	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e} \mathrm{app.}$
ICARUS/NESSiE [266]	$\pi ext{-DIF}$	$\overset{\scriptscriptstyle(-)}{\pmb{ u}_{m{\mu}}}$	$\stackrel{\scriptscriptstyle (-)}{\nu_e} \mathrm{app.}$
IsoDAR [111]	⁸ Li-DAR	$ar{ u}_e$	disapp.
nuSTORM [192]	μ Storage Ring	$\overset{(-)}{ u_e}$	$\stackrel{(-)}{\nu_{\mu}}$ app.

Too much to cover in one talk!

CSS 2013 (Snowmass) Neutrino Report, arXiv:1310.4340 (2013)

M. Toups--DBD2014

1. Light Sterile Neutrinos: A White Paper

K.N. Abazajian (UC, Irvine), M.A. Acero (Mexico U., CEN), S.K. Agarwalla (Valencia U.), A.A. Aguilar-Arevalo (Mexico U., CEN), C.H. Albright (Fermilab & Northern Illinois U.), S. Antusch (Basel U.), C.A. Arguelles (Lima, Pont. U. Catolica), A.B. Balantekin (Wisconsin U., Madison), G. Barenboim (Valencia U.), V. Barger (Wisconsin U., Madison) *et al.*. Apr 2012. 281 pp. FERMILAB-PUB-12-881-PPD

e-Print: arXiv:1204.5379 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server ; ADS Abstract Service

Detailed record - Cited by 205 records 100+

		Experiment	ν Source	ν Type	Channel
	CeLAND 259	144 Ce- 144 Pr	$ar{ u}_e$	disapp.	
		Daya Bay Source 260	144 Ce- 144 Pr	$ar{ u}_e$	disapp.
	_	SOX [261]	$^{51}\mathrm{Cr}$	$ u_e$	disapp.
			$^{144}\mathrm{Ce}\text{-}^{144}\mathrm{Pr}$	$ar{ u}_e$	disapp.
I will focus on these		BEST 64	$^{51}\mathrm{Cr}$	$ u_e$	disapp.
	~	PROSPECT [262]	Reactor	$ar{ u}_e$	disapp.
		STEREO	Reactor	$ar{ u}_e$	disapp.
	1	DANSS 263	Reactor	$ar{ u}_e$	disapp.
	\	OscSNS 205	π -DAR	$ar{ u}_{\mu}$	$\bar{\nu}_e$ app.
		LAr1 264	$\pi ext{-DIF}$	$\overset{(-)}{oldsymbol{ u}_{oldsymbol{\mu}}}$	$\stackrel{(-)}{\nu_e} \mathrm{app.}$
		LAr1-ND [264]	$\pi ext{-DIF}$	$\stackrel{\scriptscriptstyle(-)}{\pmb{ u}_{\pmb{\mu}}}$	$\stackrel{\scriptscriptstyle (-)}{\pmb{ u}_{e}} \mathrm{app.}$
		MiniBooNE+ 203	$\pi ext{-DIF}$	$\overset{(-)}{ u}_{\mu}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e}{}\mathrm{app.}$
		MiniBooNE II [265]	$\pi ext{-DIF}$	$\overset{(-)}{ u}_{\mu}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e}{}\mathrm{app.}$
		ICARUS/NESSiE 266	$\pi ext{-DIF}$	$\overset{(-)}{\pmb{ u}_{\pmb{\mu}}}$	$\stackrel{\scriptscriptstyle (-)}{\nu_e} \mathrm{app.}$
	ĺ	IsoDAR [111]	⁸ Li-DAR	$ar{ u}_e$	disapp.
		nuSTORM 192	μ Storage Ring	$\stackrel{\scriptscriptstyle(-)}{\pmb{ u}_{e}}$	$\stackrel{(-)}{\nu_{\mu}} \mathrm{app.}$

CSS 2013 (Snowmass) Neutrino Report, arXiv:1310.4340 (2013)

Very-short Baseline Disappearance Experiments

 $1/L^2$ flux rate modulated by $\text{Prob}_{osc} = \sin^2 2\theta \cdot \sin^2 \left(\Delta m^2 L / E \right)$

- Can observe oscillatory behavior within the detector if neutrino source has small extent
 - Look for a change in event rate as a function of position and energy within the detector
 - Bin observed events in L/E (corrected for the 1/L²) to search for oscillations
- Backgrounds produce fake events that do not show the oscillation L/E behavior and can be separated from signal

The Isotope Decay-At-Rest Experiment (IsoDAR)

The Isotope Decay-At-Rest Experiment (IsoDAR)

1 kton LS detector,

e.g. KamLAND

Can discriminate between sterile neutrino models

(3+1) Model with $\Delta m^2 = 1.0 \text{ eV}^2$ and $\sin^2 2\theta = 0.1$ (3+2) with Kopp/Maltoni/Schwetz Parameters PRL 107, 091801(2011) 1.00 1.00 Observed/Predicted Observed/Predicted 0.95 0,95 0.90 0.90 0.85 0 1 2 3 4 5 6 7 0.85 5 6 0 1 2 3 4 7 L/E (m/MeV) L/E (m/MeV) ~16 m

The Isotope Decay-At-Rest Experiment (IsoDAR)

M. Toups--DBD2014

PROSPECT

A Precision Reactor Oscillation and Spectrum Experiment at HFIR, ORNL

Physics Objectives

- Precision measurement of ²³⁵U reactor ve spectrum for physics and safeguards
- Search for short-baseline oscillation within near detector and between near and far detector

Phase I Detector

- 2.5 ton of LiLS
- ~ 140 segments, thin wall, optical separation
- · double-ended readout
- movable detector

M. Toups--DBD PROSPECT collaboration: prospect.yale3edu

Radioactive Source at Borexino (SOX)

M. Toups--DBD2014

Outline

- Neutrinos from Reactors, Cyclotrons, and Radioactive Sources
- Neutrino properties
 - Sterile neutrinos oscillations
 - Neutrino electron elastic scattering
- Conclusion

Neutrino-electron scattering $-g_V, g_A, sin^2\theta_W$

$$g_L = \frac{1}{2}(g_V + g_A) g_R = \frac{1}{2}(g_V - g_A)$$

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[g_R^2 + g_L^2 (1 - \frac{T}{E_\nu})^2 - g_R g_L \frac{m_e T}{E_\nu^2} \right]$$
$$g_L = \frac{1}{2} + \sin^2 \theta_W; \quad g_R = \sin^2 \theta_W$$

Precisely-known standard model cross section

 \longrightarrow Sensitive to $g_V, g_A, \sin^2\theta_W$

M. Toups--DBD2014

Neutrino-electron scattering - NSIs

Neutrino-electron scattering—v magnetic moment

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[g_R^2 + g_L^2 (1 - \frac{T}{E_\nu})^2 - g_R g_L \frac{m_e T}{E_\nu^2} \right] + \frac{\pi \alpha_{em}^2 \mu_\nu^2}{m_e^2} \left[\frac{1 - T/E_\nu}{T} \right]$$

Astrophysical limit: $\mu_{\nu} \lesssim 3 \times 10^{-12} \mu_{B}$ Phys. Rept. 320 (1999) 319-327

Naturalness: $|\mu_{\nu}| \gtrsim 8 \times 10^{-15} \mu_B$ implies neutrinos are Majorana

Phys. Rev. Lett. 95, 151802

M. Toups--DBD2014

10/6/14

Reactor Neutrinos—TEXONO

M. Toups--DBD2014

Reactor Neutrinos—Gemma experiment

Adv.High Energy Phys. 2012 (2012) 350150

1.5 kg Ge detetector, at a 3 GW_{th} commercial reactor

 $\longrightarrow \left| \mu_{
u} \right| <$ 2.9 × 10⁻¹¹ $\mu_{\rm B}$ at 90% C.L.

IsoDAR neutrino-electron scattering at KamLAND

7,200 \overline{v}_e events in 5 years of running

M. Toups--DBD2014

5 MCi ⁵¹Cr Source For 100 days at LZ

Conclusion

- Exciting beyond-the-standard model physics can be probed with low energy neutrinos
- Discovery of a sterile neutrino would be a major result for particle physics
- Robust program searching for new physics with neutrinos from reactors, cyclotrons, and radioactive sources

End