Directional Dark Matter Search Project with Super-High Resolution Nuclear Emulsions

Fundamental Particle Physics Laboratory Craduate School of Science of Nagoya University

Tatsuhiro Naka KMI/IAR, Nagoya University, Japan

DBD'14, Oct. 6, 2014 @ Hawaii, USA

Directional Dark Matter Search

✓ different information to identify the dark matter

 ✓ Identification with lower statistics (several 10 events) is possible from the asymmetry observation

What is the direction sensitive detector with scalability?

Challenge !!

- ✓ Spin-dependent search is done by gaseous Detector ⇔spin-independent search ?
- ✓ Large mass detector with solid or liquid detector
- \Rightarrow very high spatial resolution (< 1 μ m)
- ✓ Direction sensitive detector for nuclear recoil energy regions
- \Rightarrow enough angular resolution
- (< ~ 45 deg.) for very short length tracks

Can we make the direction sensitive detector with solid state ?

Special detector based on the nuclear emulsion

Detection Principle of emulsions detector

Higher resolution

Device Self-Production

1st Machine installed from 2010

Production scale : 1 kg detector / week Very low-cost device : 1.5K \$ /kg

crystal size control
 control of Q.E. for the crystal
 R&D for low-background

Weight occupancy AgBr•I : 74 % Ag (42 %), Br (31 %), I (1 %) Binder (gelatin + PVA) : 25 % C (10 %), N (4%), O (10 %), others (2%) Good scalability

⇒ no limitation for several kg scale
 ⇒ > 10 kg may be needed the production machine

□ No time resolution (disadvantage)
 ⇒ CYGNUS tracking by the mount of the equatorial telescope

Underground production and chemical development

Super-High Resolution Device

Research subject

- Estimation of detector performance
- New readout technology for very short length tracks
- Lower background device and background rejection technologies

Performance Potential of the Detector [simulation taken into account the local structure]

Mean crystal size : 43 nm (σ of size dispersion 5.8 nm) Volume occupancy of crystal : 39.6 %

> 2 grain tracks : 25 keV @ 50% eff.
> 3 grains tracks : 50 keV @ 50 % eff.
※ 40 nm AgBr crystal

Detector Analysis [Readout technology]

Combined system between high-speed selection and high-precision system

Large volume scanning

Optical microscope system ✓ High-speed scanning ✓ roughly candidate selection

Finally, ton scale readout !

But, pour resolution.

Spatial : ~ 195 nm (limited by Reyleigh criterion)

High-resolution analysis

X-ray microscope system @ SPring-8 (Syncrotron radiation ring)

Spatial Resolution : 60 nm scanning speed is pour, but 1000 events /days observation is possible.

Candidate selection for optical microscope system

Example of nuclear recoil signal

2D_Track length vs. Ellipticity

<u>Current selection is used the simple elliptical shape</u>

Another out put parameter

- position information
- brightness
- area of signals

γ/β events are expected to be distributed around Ellipticity of one.

Preliminary rejection power of electrons is better than 1E-3 by using other parameter, but it is under study.

Confirmation of selected candidate events by the X-ray microscope system

Optical microscope

Readout condition

Wavelength : 450 nm (blue light) N.A. (numerical apperture) of obj. lens : 1.4

✓ > 170 nm tracks have 100 % readout efficiency.
 ✓ short length tracks(~ 100 nm) can be read out by mechanical expansion technique.

(M. Kimura and T. Naka, NIMA, Vol. 680,11 (2012))

Simulation of detector performance taken into account the readout efficiency

Angular resolution for 40 nm crystal NIT

Accelerate voltage : > 10 keV (Max.200 kV) Type of ions : C, O, Ar (from CO₂/Ar gas) Kr (from Kr gas), F, B (from BF₃ gas) IT is good calibration for sirect detection of nuclear recoil because of uniform direction and energy.

Demonstration of Angular Distribution Measurement

Summary and Prospect

• Self-production of the super high resolution was achieved.

NIT : 40 nm crystal \Rightarrow ideal Eth > 25 keV (2 grains) and > 50 keV (3 grains) @ 50 % eff. U-NIT: 20 nm crystal \Rightarrow ideal Eth > 15 keV (2 grains) and > 30 keV (3 grains) @ 50 % eff.

• Prototype Readout system started to run.

- 1. combined system with optical microscope ⇔ X-ray microscope
- 2. 100 % readout efficiency for > 170 nm tracks
- Angular resolution for NIT ⇒ better than 30 deg. at 80 keV
 C recoil.

Future technology

Super-resolution readout method using Plasmon effect

⇒ 50 nm resolution will be achieved in the optical microscope.

Background rejection

we started the background measurement to understand the serious backgrounds Now, we are developing the new device with threshold for dE/dx .