

Status of the XENON Dark Matter Project

Recent Results from XENON100 and Prospects for Detection with XENON1T

Guillaume Plante

Columbia University

on behalf of the XENON Collaboration

DBD 2014 - Waikoloa, Hawaii - October 5-7, 2014

XENON Program

XENON10

XENON1T/XENONnT

2012-2017 / ~2017-2022

3300 kg / 7000 kg

Projected (2017) / Projected (2022)

2008-2015

161 kg

2005-2007

25 kg

Achieved (2007) Achieved (2011) $\sigma_{\rm SI} = 8.8 \times 10^{-44} \,{\rm cm}^2 \quad \sigma_{\rm SI} = 7.0 \times 10^{-45} \,{\rm cm}^2 \qquad \sigma_{\rm SI} \sim 2 \times 10^{-47} \,{\rm cm}^2 \,/\, \sigma_{\rm SI} \sim 3 \times 10^{-48} \,{\rm cm}^2$ Achieved (2012) $\sigma_{\rm SI} = 2.0 \times 10^{-45} \,\mathrm{cm}^2$

XENON Collaboration

XENON Collaboration

Why Xenon?

- Large mass number A (~131), expect high rate for SI interactions $(\sigma \sim A^2)$ if energy threshold for nuclear recoils is low
- ~50% odd isotopes (129 Xe, 131 Xe) for SD interactions
- No long-lived radioisotopes (with the exception of $^{136}{\rm Xe},~T_{1/2}=2.1\times10^{21}\,{\rm yr}$), Kr can be reduced to ppt levels
- High stopping power (Z = 54, $\rho = 3 \,\mathrm{g} \,\mathrm{cm}^{-3}$), active volume is self shielding
- Efficient scintillator (\sim 80% light yield of NaI), fast response
- Scalable to large target masses
- Nuclear recoil discrimination with simultaneous measurement of scintillation and ionization

Dual Phase TPC Principle

- Bottom PMT array below cathode, fully immersed in LXe to efficiently detect scintillation signal (S1).
- Top PMTs in GXe to detect the proportional signal (S2).
- Distribution of the S2 signal on top PMTs gives xy coordinates while drift time measurement provides z coordinate of the event (XENON100: $\Delta r < 3 \text{ mm}$, $\Delta z < 300 \,\mu\text{m}$)
- Ratio of ionization and scintillation (S2/S1) allows discrimination between electron and nuclear recoils.

XENON100: Detector

- Goal was to build a detector with a $\times 10$ increase in fiducial mass and a $\times 100$ reduction in background compared to XENON10
- All detector materials and components were screened in a dedicated low-background counting facility
- 161 kg LXe: 62 kg target surrounded by a 99 kg active veto
- 15 cm radius, 30 cm drift length active volume
- 242 low-activity Hamamatsu R8520-06-Al 1" square PMTs
- 98 tubes on top, 80 on bottom, 64 in the active veto
- Cathode at -16 kV, drift field of 0.533 kV/cm. Anode at 4.4 kV, proportional scintillation region with field ${\sim}12$ kV/cm
- Installed in a 20 cm H_2O , 20 cm Pb, 20 cm polyethylene, 5 cm Cu passive shield to suppress external backgrounds
- Aprile *et al.*, Astropart. Phys. **35**, 573, 2012

XENON100: LNGS

XENON100: Typical Low Energy Event

(182

XENON100: ER/NR Discrimination

- Background in the energy region of interest is due to low energy Compton scatters from high energy gamma rays or β decays.
- Electronic recoil band calibration performed with high energy gammas from ⁶⁰Co and ²³²Th. Nuclear recoil band calibration performed with AmBe neutron source.
- Since WIMPs are expected to elastically scatter off of nuclei understanding the behavior of single elastic nuclear recoils in Xe is essential.

XENON100: Nuclear Recoil Energy Scale

• Nuclear recoil equivalent energy E_{nr} is obtained from the S1 signal

$$E_{\rm nr} = \frac{S1}{L_{y,\rm er}} \frac{1}{\mathcal{L}_{\rm eff}(E_{\rm nr})} \frac{S_{\rm er}}{S_{\rm nr}}$$

- $L_{y,\mathrm{er}} = 2.28 \pm 0.04 \,\mathrm{pe/keVee}$, light yield of ER from 122 keV γ rays
- $S_{\rm er}=0.58,~S_{\rm nr}=0.95,$ scintillation light quenching due to drift field
- Relative scintillation efficiency $\mathcal{L}_{\mathrm{eff}}$

$$\mathcal{L}_{\text{eff}}(E_{\text{nr}}) = \frac{L_{y,\text{nr}}(E_{\text{nr}})}{L_{y,\text{er}}(E_{\text{ee}} = 122 \,\text{keV})}$$

- Record fixed-angle elastic scatters of monoenergetic neutrons tagged by organic liquid scintillators with n/γ discrimination
- Measurement performed at Columbia University, lowest energy measured 3 keV
 - Plante *et al.*, Phys. Rev. C **84**, 045805 (2011)

XENON100: Latest WIMP Search Data Released: 225 Days

- 2 candidate events observed within 34 kg fiducial volume
- Probability that the background fluctuates to 2 events when expecting 1.0 ± 0.2 is 26.4%
- Profile Likelihood analysis cannot reject background-only hypothesis
- No evidence for a dark matter signal

XENON100: Spin-Independent Results

- Exclusion limits derived with profile likelihood method, $\sigma_{\rm SI} < 2.0 \times 10^{-45} \, {\rm cm}^2$ @ $50 \, {\rm GeV}/c^2$
- Up until the latest LUX results (10/2013), was the strongest limit over a large WIMP mass range
- Aprile *et al.*, Phys. Rev. Lett. **109**, 181301 (2012)

XENON100: Response to Nuclear Recoils

- Calculate the NR response
 - Start with ²⁴¹AmBe neutron emission spectrum
 - Source strength measured (PTB) as $160 \pm 4 \, \mathrm{n/s}$
 - Propagate neutrons through a detailed Geant4 detector geometry
 - Convert energy deposits into observable S1 and S2 signals using \mathcal{L}_{eff} and \mathcal{Q}_y , including thresholds, resolutions, and acceptances from data
- First step: use the measured \mathcal{L}_{eff} from scattering experiments and derive the optimum \mathcal{Q}_y by reproducing the measured S2 spectrum
- Excellent agreement between MC and measured S2 spectrum
- E. Aprile *et al.*, Phys. Rev. D **88**, 012006 (2013)

XENON100: Response to Nuclear Recoils

- Second step: use the optimum \mathcal{Q}_y obtained to calculate the MC S1 spectrum and derive a new \mathcal{L}_{eff}
- Excellent agreement between measured S1 spectrum and MC down to 2 pe
- Indirect \mathcal{L}_{eff} obtained consistent with direct measurements
- Confirms robustness of the XENON100 $\mathcal{L}_{\mathrm{eff}}$ parametrization down to 3 keVr

XENON100: Axion Searches

• Axions and axion-like particles can couple to electrons via the axio-electric effect

$$\sigma_{Ae} = \sigma_{pe}(E) \frac{g_{Ae}^{2}}{\beta} \frac{3E^{2}}{16\pi\alpha m_{e}^{2}} \left(1 - \frac{\beta^{2/3}}{3}\right)$$

- Analogous to the photoelectric effect with an absorbed axion instead of a photon
- Expect electronic recoils from axio-electric interactions

S1 [PE] Expected signal assuming ALP constitute all of galactic DM and $g_{Ae} = 4 \times 10^{-12}$

50

60

70

80

¹0

20

10

30

40

100

90

XENON100: Electronic Recoil Energy Scale

- Need to know the response of LXe to low energy ER
- Two recent measurements of the scintillation yield of ER using the "Compton coincidence technique"

$$E_r = E_{\gamma} - \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e} \left(1 - \cos\theta\right)}$$

- At zero field, scintillation yield decreases below $60 \, \mathrm{keV}$
- Field quenching ~ 0.75 at low energies
- XENON100 energy threshold $2.04 \pm 0.21 \, \mathrm{keV}$

XENON100: First Axion Search Results

- Uses the same 225 days data as for spin-independent WIMP search
- Profile Likelihood analysis cannot reject background-only hypothesis
- Ultra-low background and low energy threshold enable XENON100 to set competitive limits
- Analysis made possible by recent measurements of scintillation yield and field quenching of ERs

XENON100: Status

- Upcoming analysis results
 - Electronic recoil rate stability analysis
 - Light dark matter ("few electrons" S2-only analysis)
 - WIMP-nucleus inelastic interactions
 - 154 days of new DM data in 2013 (blinded) under analysis
- Improvements in detector characterization
 - Calibrations with AmBe at different drift fields
 - Measurement of low-energy ($< 5 \, \mathrm{keVr}$) NRs from YBe
- Continuing data acquisition
 - Online Rn removal tests
 - Novel calibration methods

XENON1T: (Very Near) Future

From XENON100 to XENON1T: A Few of the Challenges

XENON1T: Water Cherenkov Muon Veto

- Water tank $10\,m$ high and $9.6\,m$ diameter
- Interior lined with 3M specular reflector foil
- Water tank construction completed 2013/12
- 84 high QE 8" Hamamatsu R5912 PMTs
- μ -induced neutron background < 0.01 evt/yr
- Trigger efficiency > 99.5% for neutrons with μ in water tank, ~78% with μ outside

XENON1T: Cryostat, TPC

- Double-wall vacuum insulated cryostat, constructed from selected low-activity stainless steel
- Outer vessel $2.4\,m$ high, $1.6\,m$ diameter, inner vessel ${\sim}2\,m$ high, $1.1\,m$ diameter
- 3.3 tons LXe, ${\sim}1\,m^3$ TPC, fiducial mass between 1 and 1.5 tons
- 248 3" PMTs Hamamatsu R11410-21, 36% average QE, $< 1\,\mathrm{mBq/PMT}$ in U/Th
- Background $\times 100$ lower than XENON100
- Custom low-activity high voltage feedthrough

XENON1T: Cryostat, TPC

- Double-wall vacuum insulated cryostat, constructed from selected low-activity stainless steel
- Outer vessel $2.4\,m$ high, $1.6\,m$ diameter, inner vessel ${\sim}2\,m$ high, $1.1\,m$ diameter
- 3.3 tons LXe, ${\sim}1\,m^3$ TPC, fiducial mass between 1 and 1.5 tons
- 248 3" PMTs Hamamatsu R11410-21, 36% average QE, $< 1\,\mathrm{mBq/PMT}$ in U/Th
- Background $\times 100$ lower than XENON100
- Custom low-activity high voltage feedthrough

XENON1T: Cryogenics

- Design based on experience acquired by operating XENON10, XENON100, and XENON1T Demonstrator
- Heat load below 50 W (without circulation)
- Redundant 200 W pulse tube refrigerators
- One PTR can be serviced while the other is in operation
- Backup liquid nitrogen cooling
- Circulation at ${\sim}100$ slpm through heat exchangers

XENON1T: Xe Storage

- Double-wall, high-pressure (70 atm), vacuum insulated, LN2 cooled sphere
- Designed to store ${\sim}7.6$ tons of xenon, in liquid form at $-100^{\circ}{\rm C}$ or in gaseous form at room temperature
- Detector can be filled with liquid xenon directly instead of condensing xenon gas
- In case of emergency, liquid xenon from the detector can be recovered in a few hours

XENON1T: Purification

- Continuous GXe circulation at ~ 100 slpm
- Purification using high-flow heated getters
- Two parallel circulation pumps and purification circuits
- GXe purity in-situ analytics
- Continuous monitoring of impurity concentrations (e.g. H₂O)

XENON1T: Kr Removal

- Building custom designed cryogenic distillation column for Kr removal
- XENON1T Kr/Xe concentration requirement is $<0.5\,\rm{ppt},$ aim at $<0.1\,\rm{ppt}$ with the column
- High throughput, 3 kg/hr at 10^4 separation
- 3.5 tons in \sim 1.8 months (single pass)
- Custom gas purity diagnostics (online, 83m Kr tracer, and offline, ATTA, RGMS, RGA + cold trap)

XENON1T: Expected Backgrounds

- Full MC simulation of the detector (TPC, PMTs, cryostat, water shield) with GEANT4 to predict ER background
- Neutrons from (α,n) calculated with SOURCES-4A
- Total ER background rate expected to be below $5 \times 10^{-5} \, {\rm evts/keV_{ee}/kg/day}$ before S2/S1 discrimination

 Single scatters, 1 ton fiducial volume, [2,12] keVee, [5,50] keVr, 99.75% S2/S1 discrimination, 40% NR acceptance

Source	Background (evts/yr)
ER from materials	0.05
85 Kr (0.2 ppt nat Kr)	0.07
222 Rn (1 μ Bq/kg)	0.08
Solar neutrinos	0.08
2 u 2eta	0.02
NR from materials	0.24
Total	0.54

XENON1T: Sensitivity

• Spin-independent WIMP-nucleon interaction cross section sensitivity of $2 \times 10^{-47} \text{ cm}^2$ for WIMPs with a mass of $50 \text{ GeV}/c^2$

XENONnT: Upgraded XENON1T Detector

- Rapid deployment possibility: no modifications to infrastructure required, only construction of a larger inner vessel and TPC
- Additional $\sim\!200$ PMTs and DAQ electronics channels for the upgraded TPC
- Target mass of ~6 tons, sensitivity to spinindependent WIMP-nucleon elastic scattering cross sections of $3\times10^{-48}\,\mathrm{cm}^2$

Conclusion

- XENON100 recent results on axion searches, stay tuned for more results
- XENON100 is still taking data, continuing to improve detector characterization
- XENON1T is under construction at LNGS, water tank completed, service building completed
- Integration and commissionning of primary systems (cryostat, cryogenics, storage, purification) underway, detector installation by mid-2015
- Detector commissionning in 2015, first science run starts in 2015
- XENONnT, possibility of a rapid upgrade path included in the XENON1T design