

Results from CUORE-0, Status of CUORE

Reina Maruyama (Yale University) on behalf of the CUORE Collaboration

CUORE in context

Current Projects

Project	lsotope	lsotope Mass (kg fiducial)	Currently Achieved (10 ²⁶ yr)
CUORE	¹³⁰ Te	206	>0.028
MAJORANA	⁷⁶ Ge	36.8	
GERDA	⁷⁶ Ge	18-20	>0.21
EXO200	¹³⁶ Xe	79	>0.11
NEXT-100	¹³⁶ Xe	100	
SuperNEMO	⁸² Se+	7	>0.001
KamLAND-Zen	¹³⁶ Xe	434	>0.19
SNO+	¹³⁰ Te	160	
LUCIFER	⁸² Se	8.9	

Primary goals:

Demonstrate background reduction for next generation experimen

7

Extend sensitivity to T_{1/2}~10²⁶ years.

```
Jefferson Lab R. McKeown
```

Inverted Hierarchy Coverage

Figure source: A. Dueck, W. Rodejohann, and K. Zuber, Phys. Rev. D83 (2011) 113010.

- ferson Lab R. McKeown 24
- McKeown DBD2014 Sunday

TeO₂ Bolometers for 0vββ Search

 $\Delta T_{crystal} \sim 10 \text{ - } 20 \ \mu K/MeV$

- ^{130}Te is a good $0\nu\beta\beta$ source
 - high isotopic abundance
 - high Q-value
- TeO₂ bolometer provides excellent energy resolution (0.2% at Q-value)

The CUORE 0vββ Search

R. Maruyama (Yale): CUORE - DBD2014

CUORE at LNGS

Gran Sasso National Laboratory

Average depth ~ 3600 m.w.e. μ : 3 x 10⁻⁸ μ /s/cm² n < 10 MeV: 4 x 10⁻⁶ n/s/cm² γ < 3 MeV: 0.73 γ /s/cm²

CUORE

CUORE Suspension & Detector Systems

CUORE Cryostat

R. Maruyama (Yale): CUORE - DBD2014

Lowering Background: Shielding

Lowering Background: Crystals & Copper

Ultra-pure TeO2 crystal array

Bulk activity 90% C.L. upper limits:

8.4 · 10⁻⁷ Bq/kg (²³²Th), 6.7 · 10⁻⁷ Bq/kg (²³⁸U), 3.3 · 10⁻⁶ Bq/kg (²¹⁰Po)

Surface activity 90% C.L. upper limits:

2 · 10⁻⁹ Bq/cm² (²³²Th), 1 · 10⁻⁸ Bq/cm² (²³⁸U), 1 · 10⁻⁶ Bq/cm² (²¹⁰Po)

- Crystal holder design optimized to reduce passive surfaces (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
 - Tumbling
 - Electropolishing
 - Chemical etching
 - Magnetron plasma etching

т1

т2

Benchmarked in dedicated bolometer run at LNGS

Residual ²³²Th / ²³⁸U surface contamination of Cu: < 7 · 10⁻⁸ Bq/cm²

- Validated by CUORE-0
- All parts stored underground, under nitrogen after cleaning

Tower Assembly

Detector Towers

Assembly of all 19+ towers is complete!

300 K

Outermost shield

Cryogenic System & Commissioning

- Cryostat assembled, passed commissioning tests.
- Dilution unit delivered to LNGS, series of integration and commissioning runs being carried out to ensure full operation in 2015
- Full integration of DU in cryostat ongoing
 - 6 mK stable base temperature achieved!

Status of CUORE

Status of CUORE: Cryogenics

1 10

Top Lead

Lateral Lead

Status of CUORE: Cryogenics

Commissioning Plan

Phase I: 4K system check

- Outer/Inner vacuum chamber test
- Cryogenic verification of detector calibration system
- Commissioning test of DU

Phase II: full cryostat vessel check

- Full assembly of cryostat
- Cool down of cryostat
- Integration of test tower, calibration system

Physics run start expected in 2015

The CUORE 0vββ Search

CUORE-0

- A single CUORE-like tower ~11 kg of ¹³⁰Te running in CUORICINO shielding & cryostat since March 2013
- Goals:
 - Validate new cleaning and assembly procedures for CUORE
 - stand-alone DBD experiment
- First results (Phase I data analysis) EPJC 74, 2956 (2014).
- Phase II data w/ improved detector operation condition ongoing.
- Expect to reach CUORICINO sens. with ~ 1yr lifetime (unblind early 2015)

CUORE-0 Energy Resolution

- Total ²³²Th activity of 100 Bq via two thoriated wires outside the cryostat
- Improved detector operation in Phase II
 - CUORE goal of 5 keV FWHM near ROI achieved.

22

18

20 Energy [keV]

Effective FWHM: 5.1 keV

6

8

10

12

14

16

CUORE-0 Background Measurement

Eur. Phys. J. C 74, 2956 (2014)

CUORICINO Result

Astropart. Phys. 34 (2011) 822-831

data: 2003 — 2008 19.75 kg-yr ¹³⁰Te exposure

Upper limit, Majorana mass: $m_{v_e} < 300 - 710 \text{ meV}$

CUORE-0 DBD Region

Analysis improvements underway

- Noise reduction decorrelation
 - see J. Ouellet's talk: CM.00007 Wed Oct. 8 @ 8:45 PM
- heater-less gain stabilization
- calibration, pulse-shape, and multiplicity-cuts
- Low-energy PSA for dark matter searches
- background model

EPJC 74, 2956 (2014)

Region of Interest was blinded by "salting": exchange a small (and blinded) fraction of the events in ²⁰⁸TI peak with events in the 0vDBD region to produce an artificial peak.

Unblinding in 2015

Simulated Salted CUORE-0 Data

CUORE-0 Sensitivity

CUORE-0 expected to surpass Cuoricino at ~ 1 year of live time.

CUORICINO vs. CUORE-0: improved δE & bgd δE: 4.8 keV FWHM @ ROI background: 0.063±0.006 cnts/(keV·kg·yr)

EPJC 74, 2956 (2014)

Projected CUORE Background

- CUORE-0 provides bench mark for remaining background with new assembly & crystal/Cu cleaning protocols
- CUORE results of CUORE-0 + screening campaign results -> CUORE MC

Conservatively extrapolate measured α -region bkg from CUORE-0 assuming all bkg is from ²³⁸U/²³²Th/²¹⁰Po individually

CUORE Sensitivity

- $T_{1/2}^{0\nu\beta\beta} > 9.5 \times 10^{25} \text{ yr} @ 90\% \text{ C.L.}$
- Effective Majorana mass 51 133 meV @ 90% C.L.
 - Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 counts/(keV·kg·yr), 5 years of live time.

arXiv:1109.0494

m_{lightest} [eV]

The CUORE 0vββ Search

R&D for Future Bolometric 0vßß Searches

- Increase mass: enrich in ¹³⁰Te
 - B. Wang's talk: DM.00009, Thurs., Oct. 9, 11 AM
- Reduce background via particle ID
 - e.g. LUCIFER: L. Pattavina's talk 2WM.00005 Tues., Oct. 7, 4PM
- Cleaner detectors, tag backgrounds, active veto
- Explore other/multiple isotopes

Light detector Copper holder

Energy (keVee)

Summary

- CUORE builds on the success of CUORICINO and its predecessors
- CUORE-0 has been running since March 2013. It demonstrates:
 - successful background mitigation and confirms the Cuoricino background model
 - Goal of < 5 keV FWHM for ROI energy resolution reached
 - further analysis underway.
- CUORE tower assembly is complete and cryogenic system commissioning is underway.
- Physics data taking expected to start in late 2015.
- R&D effort is underway for 0vββ search beyond CUORE.

Summary

- CUORE builds on the success of CUORICINO and its predecessors
- CUORE-0 has been running since March 2013. It demonstrates:
 - successful background mitigation and confirms the Cuoricino background model
 - Goal of < 5 keV FWHM for ROI energy resolution reached
 - further analysis underway.
- CUORE tower assembly is complete and cryogenic system commissioning is underway.
- Physics data taking expected to start in late 2015.
- R&D effort is underway for $0\nu\beta\beta$ search beyond CUORE.

