

KamLAND-Zen

Koji Ishidoshiro (Tohoku Univ.)

Double Beta Decay and Underground Science, 7th October, 2014

1

KamLAND-Zen collaboration

11 institutes,48 scientists

Collaboration meeting @UCLA, 2014

KamLAND detector

Kamioka Liquid scintillator Anti-Neutrino Detector (since 2002)

- 1,000 m depth (Kamioka mine)
- 1,000 t liquid scintillator Dodecane (80%), Psedocumene (20%), PPO (1.36g/l)
- 1,325 17inch + 554 20inch PMTs

Outer detector (for muon veto) - 3.2kton water cherenkov detector - ~100 20inch PMTs

KamLAND-Zen

Neutrino-less Double-beta decay search using ¹³⁶Xe loaded LS in a mini balloon

decane 80.2%, pseudocumene 19.8%, PPO 2.7g/l, Xe 2.4wt%

Advantages of KamLAND-Zen

- running detector: start quickly
- pure LS & 9m radius active shield

U < 3.5 x10⁻¹⁸ g/g, Th < 5.2x10⁻¹⁷ g/g

 high scalability replacement of a mini ballon off-measurement

Why ¹³⁶Xe

- Good solubility to LS (3wt%)
- Chemically stable (easy to handle)
- Establishment of enrichment method
- Q-value is 2.46MeV -> Low BG region in KamLAND

Balloon fabrication & installation 2011 Summer

1st Data taking

Start September, 2011 (DS1) 90.6% enriched xenon gas 320 kg(¹³⁶Xe 290kg)

Energy spectrum

Used data: October 12, 2011 - January 2, 2012 (DS1)

BG candidates

Search all isotopes and all decays in the ENSDF database

	decay	τ	Q-value[MeV]
^{110m} Ag	β- + γ	360 days	3.01
88Y	EC + γ	154 days	3.62
²⁰⁸ Bi	EC + γ	5.31×10⁵ yr	2.88
⁶⁰ Co	β-+γ	7.61 yr	2.82

First result

Likelihood fit to the binned energy spectrum

Possible origin of ^{110m}Ag

Fallout from Fukushima

Spallation products from ¹³⁶Xe

We do not have conclusion for ^{110m}Ag origin.

Result of the 1st phase (DS1+DS2)

DS1+DS2: October 12, 2011 - June 2, 2012 Total live time: 213.4 days, Total Exposure: 89.5 kg yr

Result of the 1st phase (DS1+DS2)

DS1+DS2: October 12, 2011 - June 2, 2012 Total live time: 213.4 days, Total Exposure: 89.5 kg yr

Test of KK claim

2nd phase KamLAND-Zen

Dec. 2013: start 2nd-phase data taking

Improvements from the 1st phase

- 1. Remove radioactive impurities by Xe-LS purification BG (^{110m}Ag) can be removed.
- 2. Increase amount of Xenon Xe concentration (2.44 ± 0.01) wt% -> (2.96 ± 0.01) wt%
- 3. Optimization of volume selection Rejection for ²¹⁴Bi on the surface of balloon film
- 4. Spallation cut after muon μ-n-10C triple coincidence cut for 10C rejection

Removal radioactive impurities

Optimization of volume selection

Vertex distribution

- Event candidate: black points (2.3 < E < 2.7 MeV)
- ²¹⁴Bi MC simulation: color histogram

z [m] (Preliminary) 10³ 10² $x^{2}+y^{2}[m^{2}]$ Large ²¹⁴Bi BG due to leakage in diaphragm pump

Multi-volume selection 40 equal volume bins (20+20 bins in upper and lower hemisphere (r<2m))

Xe-LS 383 kg Xe loaded

Outer-LS

KamLAND-Zen Phase 2

> Inner Balloon (3.08 m diameter)

Spallation cut after muon

After ^{110m}Ag reduction, ¹⁰C BGs are not negligible.

Spallation cut after muon

Energy spectrum (Phase-2)

Used data: Dec. 11, 2013 - May 1, 2014 (114.8days) r < 1.0m

Fit results

Result of Phase-2

Phase-2 result: T⁰^ν >1.3 x 10²⁵ yr (90% CL) Phase-1 result: T⁰^ν >1.9 x 10²⁵ yr (90% CL) Combined result: T⁰^ν >2.6 x 10²⁵ yr (90% CL) m_{ββ} < 140-280 meV based on (R)ORPA models J. of Phys. G 39, 124006 (2012)

Prospects

KamLAND2-Zen

R&D for KamLAND2-Zen

1. Improvements of energy resolution

-> Reduction of 2vββ events

More photons

Winston cone

Higher light collection efficiency Prototype Surface Install

Light yield will be increased ~40%

HighQE PMT QE 21% -> 31%

LAB

R&D for KamLAND2-Zen

- 2. Innovative approach
 - Dead-layer free scintillation ballon

Polyethylene naphtalate

R&D for KamLAND2-Zen

2. Innovative approach

- Imaging camera

Other possibilities IsoDAR

⁹Be target surrounded by D₂O

arXiv

Summary

KamLAND-Zen: double-beta decay experiment

Preliminary new results were released.

Phase-1 result: $T^{0v} > 1.9 \times 10^{25}$ yr Phase-2 result: $T^{0v} > 1.3 \times 10^{25}$ yr

Combined result: T^{0v} >2.6 x 10²⁵ yr

m_{ββ} < 140-280 meV with various (R)QRPA models

- Phase 2 will continue for about one year
- 600-700kg phase was already funded
- Several R&D for KamLAND2-Zen is ongoing to search for $0\nu\beta\beta$ decay in the inverted mass hierarchy
- future possibilities (IsoDAR, KamLAND-PICO)