The SNO+ Experiment

Overview and status P G Jones – On behalf of the SNO+ collaboration

Collaboration

2014-10-07

SNO to SNO+

- D₂O -> Liquid Scintillator
- Upgrade and repair the SNO detector

SNO+ Aims

SNOLAB

- 6070mwe
- ~70 muons/day
- Class-2000 clean room

Depth, meters water equivalent

Detector

Ropes

- New hold down (pictured)
 ø ~40mm Tensylon
- Replaced hold up
 - ø ~20mm Tensylon

Scintillator

- Linear alkylbenzene, LAB
 + 2g/L fluor 2,5-diphenyloxazole, PPO
- Chemical compatibility with acrylic
- High light yield (~10,000 optical photons/MeV)
- Low scattering, Good optical transparency
- Fast decay (different for betas and alphas)
- High flash point 140°C, Boiling point 278-314°C
- Low toxicity
- Environmentally safe, Inexpensive
- Low solubility in water 0.041 mg/L

Linear Alkylbenzene

Scintillator purification

Scintillator plant

• Completion estimated fall 2015

Isotope

Te

Carboxylate-based organometallic complex

Isotope purification

- Above ground
 - Dissolve $Te(OH)_6$ in water
 - Re-crystalize using nitric acid $> 10^4$ reduction
 - Rinse with ethanol
- Below ground
 - Dissolve in 80°C water
 - Thermally re-crystalize
 - 50% yield

10²

⁶⁰Co spike test

Calibration

Brief overview

As predicted using the SNO+ Monte Carlo

• 18.6 events/year

Cosmogenic

- Cosmogenic activation ^{nat}Te
 - At sea level
- Purification reduction $\sim 10^4$
- Expect negligible background
 In ROI

Е	lement	Reduction	Assay
_		Factor	Technique
	Stage	1 Te purific	cation, single-pass spike test
	Co	1492 ± 326	X-ray fluorescence
	Sb	>243	
	Sn	> 167	Auto-titration
	Fe	> 100	X-ray fluorescence
	Na	346	Auto-titration
	\mathbf{Sc}	> 165	X-ray fluorescence
	Ge	> 333	X-ray fluorescence
	Y	> 278	X-ray fluorescence
	\mathbf{Zr}	> 278	Auto-titration
4	Ag	> 278	X-ray fluorescence
,	Bi	348 ± 81	Th-228 tracer
	Ra	397 ± 20	Th-228 tracer
	Th	390 ± 19	Th-228 tracer
	Stage 1 Te purification, double-pass spike test		
	Co	3.7×10^{5}	X-ray fluorescence
	Th		
Stage 2 (UG) Te purification, single-pass spike test			
	Co	12	
	Ag	> 20	
_	Zr	17	

V. Lozza, J. Petzoldt "Comogenic activation of a natural Tellurium target", http://dx.doi.org/10.1016/j.astropartphys.2014.06.008

External y

- 3.5m FV (R/R_{AV})³=0.2
- 3.8 events/year predicted in ROI

²⁰⁸Tl 2.6MeV γ example for full energy domain (no ROI cut)

Internal ²³⁸U and ²³²Th

Bi -> Po

• Direct (in ROI) and pileup with Po (into ROI)

Background Rejection

Bi Po coincidence decays

- Tag Polonium alpha decay...
- ...can then reject previous Bismuth events

Bi Po coincidence Pileup

Background Rejection

Pileup

- Negligible pileup predicted
 - However, powerful techniques developed to reject
 - Isotropy and timing based

Spectrum

Half-life limit

Mass sensitivity

2014-10-07

P G Jones <p.g.jones@qmul.ac.uk>

Discovering 0vββ

Schedule

Jan 2015Jun 2015Jan 2016Jun 2016Jan 2017Jun 2018Water phase

- Water phase
 - External background analysis
- Scintillator phase
 - Background analysis
- 0.3% Te-Scintillator phase
 0vββ physics

Higher loading

- SNO+ plans 0.3% Te loading (8 tonne of Te)
- Percent level loading feasible
 - Investigate smaller volume containment in a bag
 - Investigate upgrading PMTs to high QE

0.3%, 0.5%, 1%, 3%, 5% Te loading samples

Conclusion

- SNO+ at 0.3% ^{nat}Te loading will set competitive limits
 T_{1/2} = 9.84x10²⁵ yr at 90% CL after 5 years
- Possible to significantly increase loading

 Potentially world leading sensitivity
- Water data early next year
- $0\nu\beta\beta$ data late 2016

2014-10-07

Limit/Spectrum assumptions

- 1. 130Te undergoes double beta decay with nuclear matrix element
- M = 4.03 (IBM-2) [1] and phase space factor G = 3.69 x 10^-14 y^-1, based on
- the expression in [2] and g_A = 1.269 [1]
- 2. Scintillator loaded with 0.3% natTe by mass
- 3. Energy resolution is Gaussian with width sigma(E) = sqrt(E [MeV]/200)
- 4. 3.5 m (20%) fiducial volume cut
- 5. 100% efficiency of detection and analysis, including reconstruction
- 6. Tagging techniques which remove all 212BiPo and 214BiPo coincidences in
- separate trigger windows, and reduce in-window coincidences by a factor of 50
- 7. Backgrounds rates as given in SNO+-doc-507-v20

[1] J. Barea, J. Kotila, F. Iachello, Nuclear matrix elements for double-beta decay, Phys. Rev. C 87, 014315 (2013).

[2] J. Kotila, F. Iachello, Phase space factors for double-beta decay Phys, Rev. C 85, 034316 (2012).

[3] R. Bonventre, A. LaTorre, J.R. Klein, G.D. Orebi Gann, S. Seibert, O. Wasalski, Non-Standard Models, Solar Neutrinos, and Large theta13, Phys. Rev. D 88, 053010 (2013).

[4] SNO Collaboration, Combined Analysis of all Three Phases of Solar NeutrinoData from the Sudbury Neutrino Observatory, Phys. Rev. C 88, 025501 (2013).