

Recent Results from the MINOS Experiment

Costas Andreopoulos (*)

* for the MINOS collaboration

Double Beta Decay & Neutrinos 2007 (DBD07), June 11-13, Osaka, Japan

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Introduction

- Neutrino Oscillations
- Open Questions
- MINOS Physics Goals

The MINOS Experiment

- How is it done?
- The NuMI beamline at Fermilab
- The Detectors
 - Detector technology
 - The FAR & NEAR detectors
 - MINOS calibration
- Interaction types & Event topologies

The nu_mu CC disappearance analysis

- Event selection
- NEAR Detector Energy Spectra
- Hadron production tuning
- Predicting the FAR Detector Energy Spectrum
- Observed Rates & Best fit spectrum
- Allowed Regions & Best fit parameters
- Systematics
- Projected Sensitivity

W

q bar{q}

Neutrino Oscillations

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

A quantum-mechanical interference effect

Production & Detection: Governed by electoweak hamiltonian

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

PMNS (CKM-like) unitary matrix

Propagation: Governed by free hamiltonian

Each mass eigenstate propagates at different pace!

Relative mixture of mass eigenstates changes!

Flavour oscillations are possible

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \Sigma \Sigma U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j} \sin^{2}[\Delta m_{ij}^{2} L/4E_{\nu}]$$

Phenomenon has been observed with:

solar, atmospheric, reactor & accelerator neutrinos!

۷į

W

q bar{q}

Open Questions

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Goals:

- Determine the elements of the PMNS matrix
- Determine neutrino mass (splittings)

• Impressive progress over the past decade - A 'precision measurement' era for neutrinos

Physics Goals for MINOS

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

MINOS: A <u>precision</u> oscillation experiment

- Test the $v_{\mu} \rightarrow v_{\tau}$ oscillation hypothesis
 - Measure precisely $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$
- Search for sub-dominant v_μ→v_e oscillations
- Search for/constrain exotic phenomena
- Compare ν_{μ} , $\overline{\nu_{\mu}}$ oscillations
- Atmospheric neutrino oscillations
 - Phys. Rev. D73, 072002 (2006)

How the experiment is done

A 2 detector, long-baseline neutrino experiment using an intense, accelerator-made beam

Outline v Oscillations

MINOS Goals

MINOS Overview

Beamline

Detectors

Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Why a 2 detector experiment?

Outline v Oscillations

MINOS Goals

MINOS Overview

Beamline

Detectors

Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Reducing systematic errors

- Effect of large flux & cross-section uncertainties minimized
- Detector / reconstruction effects minimized
- 'Unoscillated' FAR spectrum extrapolated from NEAR

Cross Section Uncertainty

Why a 2 detector experiment? Reducing systematic errors

Outline v Oscillations

MINOS Goals

MINOS Overview

Beamline

Detectors

Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Hadron Production Uncertainty

Why a 2 detector experiment? Reducing systematic errors

Outline v Oscillations

MINOS Goals

MINOS Overview

Beamline

Detectors

Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

The MINOS Collaboration

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Brazil

Campinas - Sao Paulo

France

College de France

Greece

Athens

Russia

ITEP Moscow – Lebedev – Protvino

UK

Cambridge – Oxford – RAL –

Sussex - UCL

USA

Argonne – Benedictine – Brookhaven –
Caltech – Fermilab – Harvard – IIT –
Indiana – Livermore – Minnesota, Twin
Cities – Minnesota, Duluth – Pittsburgh –
South Carolina – Stanford – Texas A&M –
Texas-Austin – Tufts – Western
Washington – William & Mary - Wisconsin

- 6 countries
- 32 institutions
- ~175 physicists

The NuMI beamline @ Fermilab

Costas Andreopoulos

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id ND Spectra Tuning FD Prediction Observed spectrum Allowed Regions Systematics Projected Sensitivity

Detector Technology

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Massive segmented iron calorimeters, with inexpensively produced plastic scintillator as active material. The scintillation light is collected by WLS fibers read out by multianode PMTs.

The FAR Detector @ Soudan mine

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Purpose:

- Measure nu mu CC, NC -- energy spectra & rates
- Search for nu e appearance
- Atmospheric Neutrino physics studies (upgoing muons, contained neutrino events,...)
- Cosmic Ray physics studies (mu+/mu- charge ratio, point sources, ...)

- at Soudan mine, MN
- ~ **735 km** from NuMI target
- depth: ~ 750 m
- ~ 5.4 kton
- 486 steel planes
- B ~ 1.3 T
- 2-ended readout
- 16-anode PMTs (HPK M16)
- x8 optical multiplexing
- VA electronics

operational since
June 2003

The NEAR Detector @ Fermilab

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Purpose:

- Measure beam with high statistics before oscillations
- Tune neutrino & beam / hadron-production MC
- Predict Far detector spectrum

- at Fermilab
- ~ 1 km from NuMI target
- swallow depth: ~ 100 m
- ~ 1 kton
- 282 steel planes
- B Field ~ 1.2 T
- 1-ended readout
- 64-anode PMTs (HPK M64)
- no multiplexing upstream
- 4x MUX in spectrometer
- Very high rates
- QIE electronics (no deadtime during spill)

operational since

~ November 2004

MINOS Calibration

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

- Calibration detector
 - Determine overall energy scale
- Light Injection system
 - Determine/monitor PMT gains
- Cosmic ray muons
 - Equalize strip to strip response
 - Equalize detector to detector response

Single particle energy resolution

Energy scale calibration:

- 1.9% absolute error in ND
- 3.5% absolute error in FD
- 3% relative

How do neutrinos interact at few GeV?

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

LAr images, courtesy A.Currioni

Costas Andreopoulos

Event topologies

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Monte Carlo Events

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Selection cuts

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Events in time with the beam

Vertex in fiducial volume

FAR:

z > 0.50 m from edge, z > 2 m from end, within 3.7 m of detector centre

NEAR:

1m < z < 5m from upstream end, within 1 m of the beam centre

At least one good reconstructed track

With negative charge

Event Selection

ŏ

Number

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Using a maximum likelihood technique with 3 input PDFs:

200

Event Length (planes)

150

NEAR detector energy spectrum

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id

ND Spectra

Tuning

FD Prediction

Observed spectrum

Allowed Regions

Systematics

Projected Sensitivity

Summary

Error envelopes indicates size of beam modelling, neutrino interaction modelling and calibration uncertainties (combined).

RMS 4.012

Hadron production tuning

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Prediction of FAR spectrum

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

The 'Matrix' method:

- The un-oscillated FAR spectrum is determined by the NEAR spectrum
- No dead-reckoning based on MC. The MC is used only for providing corrections
- Measured NEAR spectrum is extrapolated based only on knowledge of pion decay kinematics & the beamline geometry

Prediction of FAR spectrum

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

- Alternative extrapolation methods give nearly identical results
- Confidence in out ability to predict the un-oscillated FAR spectrum
- Having a 2-detector experiment pays off!

Observed rates & best-fit spectrum

Outline v Oscillations

MINOS Goals MINOS Overview Beamline **Detectors Events**

Event Id ND Spectra **Tuning FD Prediction Observed spectrum Allowed Regions Systematics Projected Sensitivity**

Summary

Data sample	observed	expected	ratio	significance
v_{μ} only (<30 GeV)	215	336.0±14.4	0.64±0.05	5.2σ
v_{μ} only (>10 GeV)	93	97.3±4.2	0.96±0.04	0.4σ
v_{μ} only (<10 GeV)	122	238.7±10.7	0.51±0.06	6.2σ

$$\chi^{2} = \sum_{i=1}^{\text{nbins}} 2(e_{i} - o_{i}) + 2o_{i} \ln(o_{i}/e_{i}) + \sum_{j=1}^{\text{nsys}} \Delta s_{j}^{2} / \sigma_{s_{j}}^{2}$$

Costas Andreopoulos

Allowed regions & Best fit parameters

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

$$\left|\Delta m_{32}^{2}\right| = 2.74_{-0.26}^{+0.44} (stat + syst) \times 10^{-3} eV^{2}$$

 $\sin^{2} 2\theta_{23} = 1.00_{-0.13} (stat + syst)$

Systematic errors

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

Computed with fake (mc) data at $\Delta m^2 = 0.0027 \text{ eV}^2$, $\sin^2 2\theta = 1.0$

Preliminary Uncertainty	Shift in ∆m² (10-³ eV²)	Shift in sin²2θ
Near/Far normalization +/-4%	0.050	0.005
Absolute hadronic energy scale +/-11%	0.060	0.048
NC contamination +/-50%	0.090	0.050
All other systematic uncertainties	0.044	0.011
Total systematic (summed in quadrature)	0.13	0.07
Statistical error (data)	0.36	0.12

- •3 largest uncertainties included in oscillation fit as nuisance parameters
- Size of uncertainties are obtained by doing MC studies
- Table shows shift in the oscillation parameters by fitting fake data

Current Status / Projected Sensitivity

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

An updated analysis is coming soon (~2.6E+20 POT)

MINOS Sensitivity as a function of Integrated POT

Ινπυτο: $\Delta m^2 = 0.00274 \text{ eV}^2$, $\sin^2 2\theta = 1.0$

Outline v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary

MINOS has completed / published a numu CC disappearance analysis of the first year's beam exposure (1.27E+20 POT)

Exclude no-oscillations at 6.2σ (rate only)

$$\left|\Delta m_{32}^{2}\right| = 2.74_{-0.26}^{+0.44} (stat + syst) \times 10^{-3} eV^{2}$$

 $\sin^{2} 2\theta_{23} = 1.00_{-0.13} (stat + syst)$

Analysis of the second year's data in progress

More analyses under way (numu->nue, search for sterile nus,...)

Back-up Slides

Physics reach: nu_e appearance

Physics Distributions

ack-up Slide

Atmospheric Neutrinos

ack-up Slide

PRD 73, 072002 (2006)

Selection	Data		Expected	
		no oscillations	$\Delta m_{23}^2 = 0.0024 eV^2$	
Low Res.	30	37 ± 4	28 ± 3	
Ambig. $\nu_{\mu}/\overline{\nu}_{\mu}$	25	26 ± 3	20 ± 2	
The state of the s	34	42 ± 4	31 ± 3	
$rac{ u_{\mu}}{\overline{ u}_{\mu}}$	18	23 ± 2	17 ± 2	

Neutrino Time Of Flight

ack-up Slide

FAR Detector data events

Track energy from range: 9.596 GeV

Reconstructed Shower energy: 5.108 GeV

Science & Technology Facilities Council

NEAR Detector data events

High rates, Multiple neutrino interactions per beam spill.

