Recent Results from the MINOS Experiment

Costas Andreopoulos (*)

* for the MINOS collaboration

Double Beta Decay & Neutrinos 2007 (DBD07), June 11-13, Osaka, Japan
• Introduction
 • Neutrino Oscillations
 • Open Questions
 • MINOS Physics Goals

• The MINOS Experiment
 • How is it done?
 • The NuMI beamline at Fermilab
 • The Detectors
 • Detector technology
 • The FAR & NEAR detectors
 • MINOS calibration
 • Interaction types & Event topologies

• The nu_mu CC disappearance analysis
 • Event selection
 • NEAR Detector Energy Spectra
 • Hadron production tuning
 • Predicting the FAR Detector Energy Spectrum
 • Observed Rates & Best fit spectrum
 • Allowed Regions & Best fit parameters
 • Systematics
 • Projected Sensitivity

• Summary
A quantum-mechanical interference effect

Production & Detection: Governed by electroweak Hamiltonian

Producing / detecting interaction eigenstates
(superposition of mass eigenstates)

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

PMNS (CKM-like) unitary matrix

Propagation: Governed by free Hamiltonian

Each mass eigenstate propagates at different pace!
Relative mixture of mass eigenstates changes!

Flavour oscillations are possible

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \delta_{\alpha\beta} - 4 \sum \sum U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j} \sin^2[\Delta m_{ij}^2 L / 4 E_\nu]
\]

Phenomenon has been observed with:
solar, atmospheric, reactor & accelerator neutrinos!
Open Questions

Goals:
- Determine the elements of the PMNS matrix
- Determine neutrino mass (splittings)

• Impressive progress over the past decade - A 'precision measurement' era for neutrinos

• Still many open questions:
 - How close to 0 is θ_{13}?
 (hidden symmetry?)
 - Which one? … or none (quasi-degenerate)?
 - Is θ_{23} maximal?
 (hidden symmetry?)
 - Can we measure the absolute scale?
 (not accessible with oscillations)
 - Is CP violated at the leptonic sector?
 - Dirac/Majorana?
 (not accessible with oscillations)
 - Which one? … or none (quasi-degenerate)?
Physics Goals for MINOS

- Test the $\nu_\mu \rightarrow \nu_\tau$ oscillation hypothesis
 - Measure precisely $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$

- Search for sub-dominant $\nu_\mu \rightarrow \nu_e$ oscillations

- Search for/constrain exotic phenomena

- Compare $\nu_\mu, \bar{\nu}_\mu$ oscillations

- Atmospheric neutrino oscillations
How the experiment is done

A 2 detector, long-baseline neutrino experiment using an intense, accelerator-made beam
Reducing systematic errors
- Effect of large flux & cross-section uncertainties minimized
- Detector / reconstruction effects minimized
- 'Unoscillated' FAR spectrum extrapolated from NEAR

Monte Carlo

Measures squared mass splitting

Measures mixing strength

Outline
- v Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events

Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
Why a 2 detector experiment? Reducing systematic errors

Outline
- v Oscillations

MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events

Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
Hadron Production Uncertainty

Why a 2 detector experiment? Reducing systematic errors

Outline
v Oscillations

MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Allowed spectrum
Systematics
Projected Sensitivity

Summary

<table>
<thead>
<tr>
<th>Spread due to models:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 8% (peak)</td>
</tr>
<tr>
<td>– 15% (tail)</td>
</tr>
</tbody>
</table>
The MINOS Collaboration

- 6 countries
- 32 institutions
- ~175 physicists
The NuMI beamline @ Fermilab

- a 'conventional' neutrino beam
- ~pure / intense muon neutrino beam
- tunable energy

First year averages:
- Intensity: 2.3E+13 POT/spill
- Cycle: 2.2 s
- Power: 170 kW

Costas Andreopoulos
Massive segmented iron calorimeters, with inexpensively produced plastic scintillator as active material. The scintillation light is collected by WLS fibers read out by multianode PMTs.
Purpose:
- Measure ν_{μ} CC, NC -- energy spectra & rates
- Search for ν_{e} appearance
- *Atmospheric Neutrino physics studies* (upgoing muons, contained neutrino events,...)
- *Cosmic Ray physics studies* (mu+/mu- charge ratio, point sources, ...)

B Field
- at Soudan mine, MN
- ~ 735 km from NuMI target
- depth: ~ 750 m
- ~ 5.4 kton
- 486 steel planes
- $B \sim 1.3$ T
- 2-ended readout
- 16-anode PMTs *(HPK M16)*
- x8 optical multiplexing
- VA electronics

Operational since
June 2003

Outline
- ν Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- **Detectors**
- Events

Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
Costas Andreopoulos

The NEAR Detector @ Fermilab

- at Fermilab
- ~ 1 km from NuMI target
- ~ 1 kton
- 282 steel planes
- B Field ~ 1.2 T
- scintillator plane
- steel plane (magnetized)
- coil hole
- 3.8 m
- PMTs & front-end electronics
- 1-ended readout
- 64-anode PMTs (HPK M64)
- no multiplexing upstream
- 4x MUX in spectrometer
- no deadtime during spill!
- QIE electronics
- operational since November 2004

Purpose:

- Measure beam with high statistics before oscillations
- Tune neutrino & beam / hadron-production MC
- Predict Far detector spectrum
- Predicted Sensitivity
- Systematics
- Allowed Regions
- Observed spectrum
- FD Prediction
- Tuning
- ND Spectra
- Event ld
- Events

Outline
- MINOS Overview
- Detector
- Beamline
- MINOS Goals
- V Oscillations
• Calibration detector
 • Determine overall energy scale
• Light Injection system
 • Determine/monitor PMT gains
• Cosmic ray muons
 • Equalize strip to strip response
 • Equalize detector to detector response

Energy scale calibration:
- 1.9% absolute error in ND
- 3.5% absolute error in FD
- 3% relative

$55\% / \sqrt{E}$
$23\% / \sqrt{E}$
How do neutrinos interact at few GeV?

Outline
- v Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events
- Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity
- Summary

QEL CC

DIS CC

low multiplicity inelastic CC (RES)

LAr images, courtesy A.Currioni

Costas Andreopoulos
Event topologies

Monte Carlo Events

nu_mu CC

NC

nu_e CC

• long μ track
• hadronic activity at vertex

• short event
• often diffuse

• short event
• typical EM shower profile

Outline

v Oscillations

MINOS Goals

MINOS Overview

Beamline

Detectors

Events

Event Id

ND Spectra

Tuning

FD Prediction

Observed spectrum

Allowed Regions

Systematics

Projected Sensitivity

Summary
The 1st year (1.27E+20 POT) nu_mu CC Disappearance Analysis

D.G. Michael et al, PRL 97, 191801 (2006)
Events in time with the beam

Vertex in fiducial volume

FAR:
- $z > 0.50 \text{ m from edge}$,
- $z > 2 \text{ m from end}$,
- within 3.7 m of detector centre

NEAR:
- $1 \text{ m} < z < 5 \text{ m from upstream end}$,
- within 1 m of the beam centre

At least one good reconstructed track
- With negative charge
Event Selection

Using a maximum likelihood technique with 3 input PDFs:

Outline
v Oscillations
MINOS Goals
MINOS Overview
Beamline
Detectors
Events

Event Id
ND Spectra
Tuning
FD Prediction
Observed spectrum
Allowed Regions
Systematics
Projected Sensitivity

Summary
Error envelopes indicates size of beam modelling, neutrino interaction modelling and calibration uncertainties (combined).

Good Data / MC agreement
Tuning

● Hadro-production (Fluka05 based beam simulation) tuning

● Even better data / MC agreement is obtained

● Applied weights as function of xF and pT

Weights applied vs p_{z} & p_{T}
The 'Matrix' method:

- The un-oscillated FAR spectrum is determined by the NEAR spectrum
- No dead-reckoning based on MC. The MC is used only for providing corrections
- Measured NEAR spectrum is extrapolated based only on knowledge of pion decay kinematics & the beamline geometry

\[E_\nu = \frac{0.43 E_\pi}{1 + \gamma^2 \theta^2} \]

\[\text{Flux} \propto \frac{1}{L^2} \left(\frac{1}{1 + \gamma^2 \theta^2} \right)^2 \]
• Alternative extrapolation methods give nearly identical results
• Confidence in our ability to predict the un-oscillated FAR spectrum
• Having a 2-detector experiment pays off!
Observed rates & best-fit spectrum

<table>
<thead>
<tr>
<th>Data sample</th>
<th>observed</th>
<th>expected</th>
<th>ratio</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ only (<30 GeV)</td>
<td>215</td>
<td>336.0±14.4</td>
<td>0.64±0.05</td>
<td>5.2σ</td>
</tr>
<tr>
<td>ν_μ only (>10 GeV)</td>
<td>93</td>
<td>97.3±4.2</td>
<td>0.96±0.04</td>
<td>0.4σ</td>
</tr>
<tr>
<td>ν_μ only (<10 GeV)</td>
<td>122</td>
<td>238.7±10.7</td>
<td>0.51±0.06</td>
<td>6.2σ</td>
</tr>
</tbody>
</table>

$\chi^2 = \sum_{i=1}^{n \text{bins}} 2(e_i - o_i) + 2o_i \ln(o_i/e_i) + \sum_{j=1}^{n \text{sys}} \Delta s_j^2 / \sigma_j^2$

See energy dependent suppression.
Δm^2_{32} = 2.74^{+0.44}_{-0.26} \text{ (stat + syst)} \times 10^{-3} \text{ eV}^2

\sin^2 \theta_{23} = 1.00^{+0.15}_{-0.13} \text{ (stat + syst)}
Computed with fake (mc) data at $\Delta m^2=0.0027\,\text{eV}^2$, $\sin^22\theta=1.0$

<table>
<thead>
<tr>
<th>Preliminary Uncertainty</th>
<th>Shift in Δm^2 ($10^{-3},\text{eV}^2$)</th>
<th>Shift in $\sin^22\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near/Far normalization $\pm-4%$</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>Absolute hadronic energy scale $\pm-11%$</td>
<td>0.060</td>
<td>0.048</td>
</tr>
<tr>
<td>NC contamination $\pm-50%$</td>
<td>0.090</td>
<td>0.050</td>
</tr>
<tr>
<td>All other systematic uncertainties</td>
<td>0.044</td>
<td>0.011</td>
</tr>
<tr>
<td>Total systematic (summed in quadrature)</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>Statistical error (data)</td>
<td>0.36</td>
<td>0.12</td>
</tr>
</tbody>
</table>

- 3 largest uncertainties included in oscillation fit as nuisance parameters
- Size of uncertainties are obtained by doing MC studies
- Table shows shift in the oscillation parameters by fitting fake data
An updated analysis is coming soon (~2.6E+20 POT)

\[\Delta m^2 = 0.00274 \text{eV}^2, \quad \sin^2 2\theta = 1.0 \]
MINOS has completed / published a numu CC disappearance analysis of the first year's beam exposure (1.27E+20 POT)

Exclude no-oscillations at 6.2σ (rate only)

\[
|\Delta m^2_{32}| = 2.74^{+0.44}_{-0.25} \text{ (stat + syst)} \times 10^{-3} \text{ eV}^2 \\
\sin^2 2\theta_{23} = 1.00^{+0.00}_{-0.13} \text{ (stat + syst)}
\]

Analysis of the second year's data in progress

More analyses under way (numu->nue, search for sterile nus,...)
Back-up Slides
Physics reach: ν_e appearance

Expected "exposure" by the end of the year
Muons momentum

Shower energy

Inelasticity y

Shower Energy Distribution

- **Data**: Mean 6.764, RMS 6.185
- **MC**: Mean 6.383, RMS 5.795

Muon Momentum Distribution

- **Data**: Mean 0.3951, RMS 0.2595
- **MC**: Mean 0.3968, RMS 0.2574

MINOS PRELIMINARY
Back-up Slide

PRD 73, 072002 (2006)
GPS synchronises two detectors

Distance known precisely: 734,298.6 ± 0.7 m

Time of Flight Measurement:
Nominal: (734298.6 ± 0.7 m distance) 2449356 ns
Measured: 2449223 ± 84 (stat) ± 164 (sys) ns 99% C.L.

Neutrino Velocity:
\((v-c)/c = 5.4 \pm 7.5 \times 10^{-5} \) 99% C.L.
Track energy from range: 9.596 GeV
Reconstructed Shower energy: 5.108 GeV
High rates, Multiple neutrino interactions per beam spill.