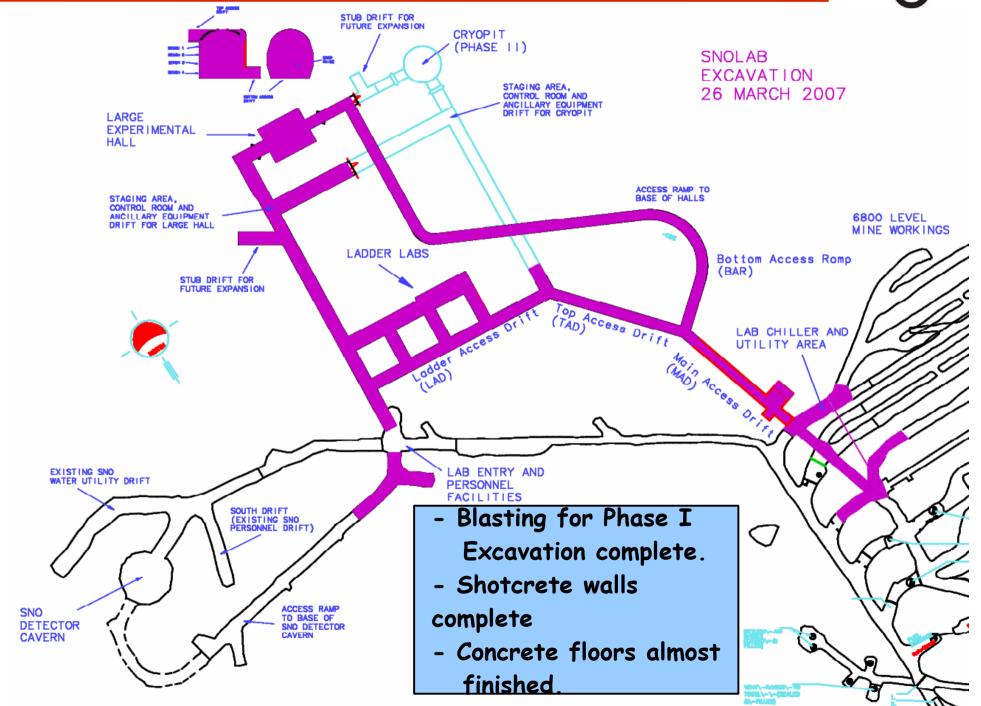

Experimental Program

SNOLAB

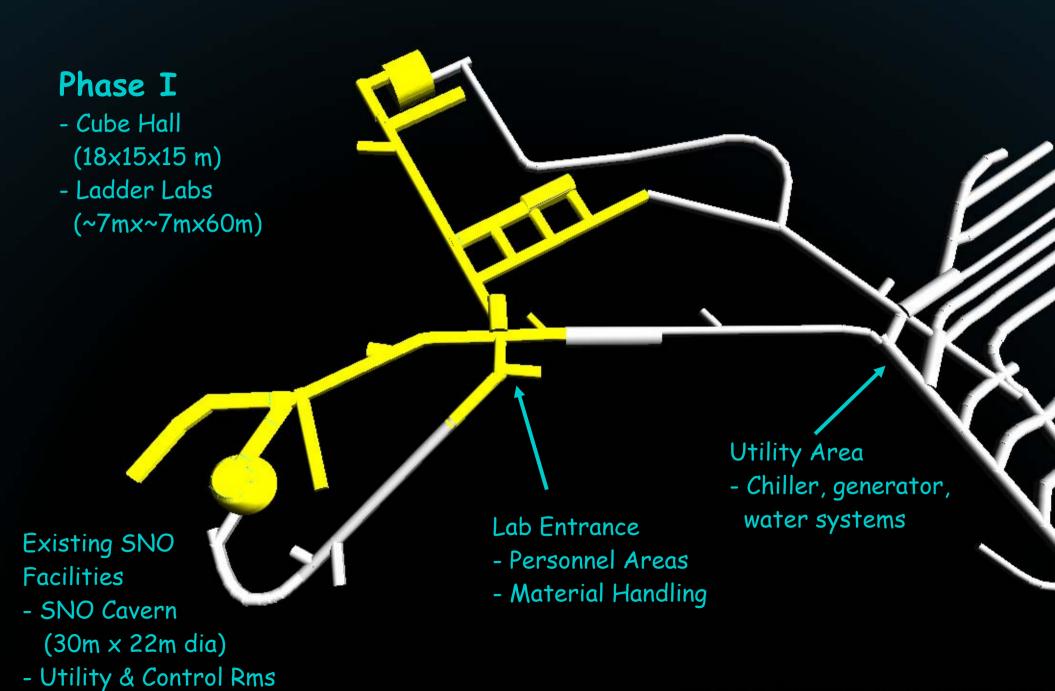
located **2 km underground** in an active nickel mine near Sudbury, Canada

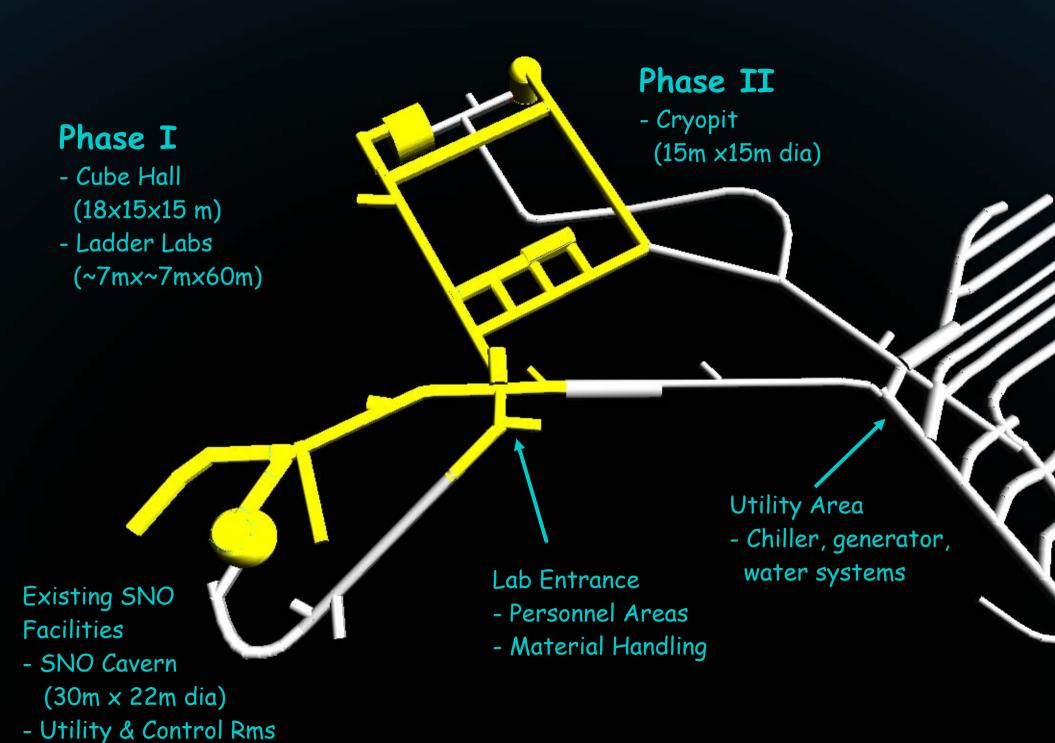
it's an expansion of the underground facility on the same level as the SNO experiment

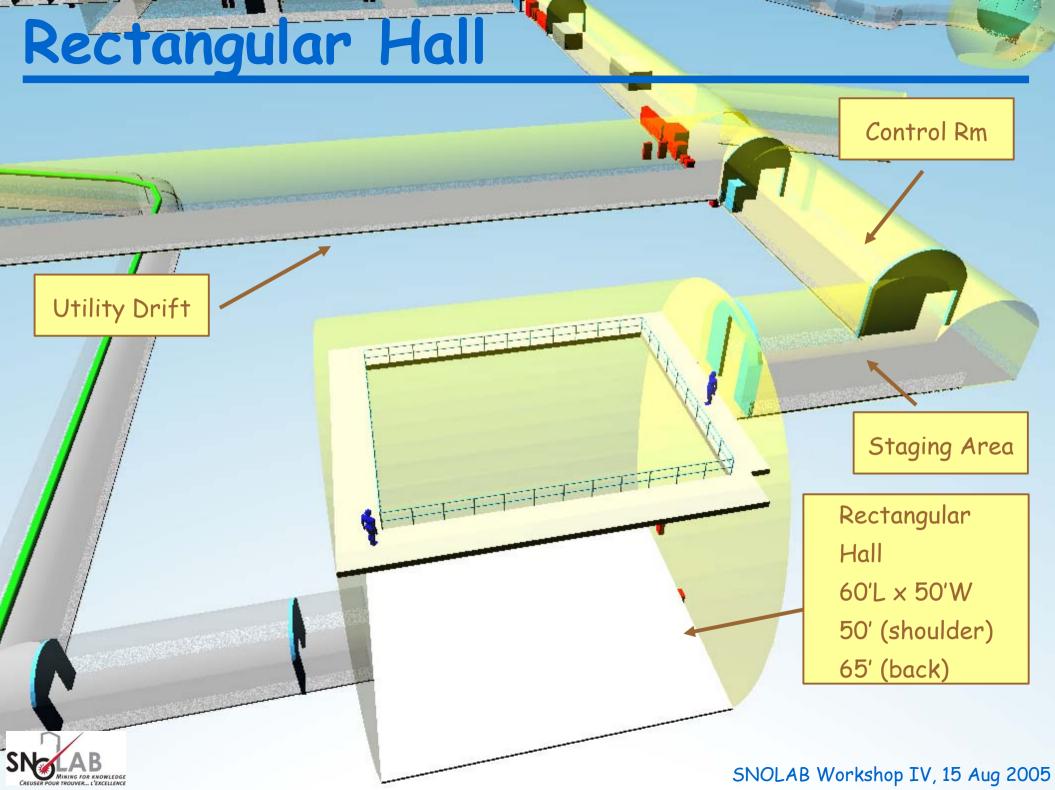


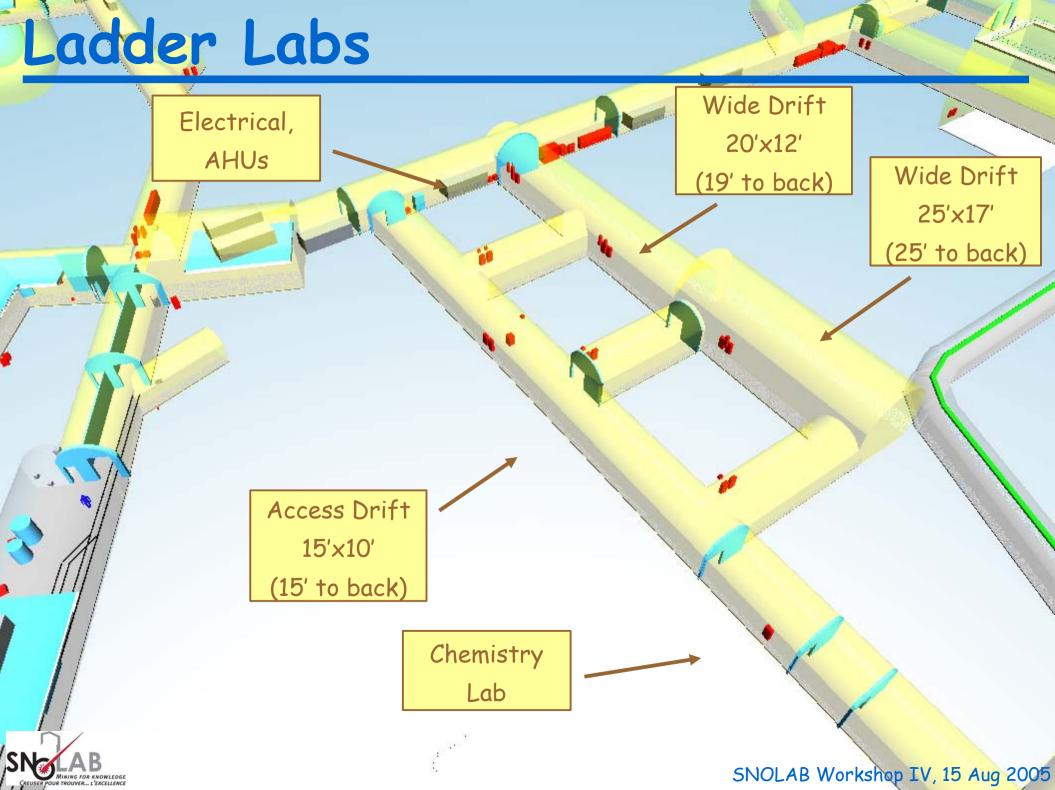
Surface Facility

Excavation Status (Today)









SNOLAB Experiments

- Some 20 projects submitted Letters of Interest in locating at SNOLAB. Of these, 10 have been encouraged by the Experiment Advisory Committee as being both scientifically important and particularly suited to the SNOLAB location.
- The experimental physics program includes
 - Neutrinos: Low energy solar neutrinos, geo-neutrinos, reactor neutrinos, supernova neutrino detection
 - Tests of neutrino properties, precision measurements of solar neutrinos, radiogenic heat generation in the earth, stellar evolution. [SNO+, HALO]
 - Neutrinoless Double Beta Decay:
 - Determine the nature of the neutrino and absolute neutrino mass. [SNO+, EXO, Majorana]
 - Dark Matter Searches:
 - Direct dark matter detection. [PICASSO, DEAP/CLEAN, CDMS, LUX]
- Several of these experiments are also being proposed for other laboratories.

Initial Suite of Experiments

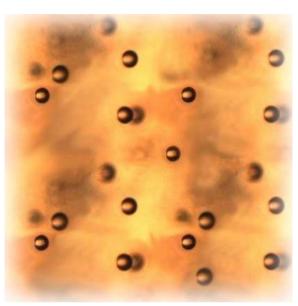
Experiments requesting space at SNOLAB

Experiment	Physics	Target	Location	Funding	Start
SNO	Solar nu		SNO Cavern		Decommissioning
SNO+	Solar nu, OnuBB, Geo nu	1kT LS	SNO Cavern	partial	2008
PICASSO -IB, II	DM	2-4kg F	SNO Area	funded	Running (2kg Phase)
PICASSO -IIB		25kg F	Ladder Labs	request in 07	2008
PICASSO-III		100kg F	Cube Hall		2009
DEAP-1	DM	7kg LAr	SNO Area	funded	2007
DEAP/CLEAN	DM	1T LAr	Cube Hall or Cryopit	partial	2008
EXO-200 Gas	OnuBB	200kg Gas Xe	Ladder Labs	partial	2009
SuperCDMS	DM	25kg Ge	Ladder Labs	requested	2010?
HALO	Supernova nu	80T Pb	SNO Area	request in 07	2008
PUPS	Seismology		Several locations	funded	Running

Experiments that have not yet selected a site

Majorana	OnuBB	120kg Ge	Ladder Labs	requested	2009
LUX	DM	200kg LXe	Cube Hall or Cryopit	requested	2009

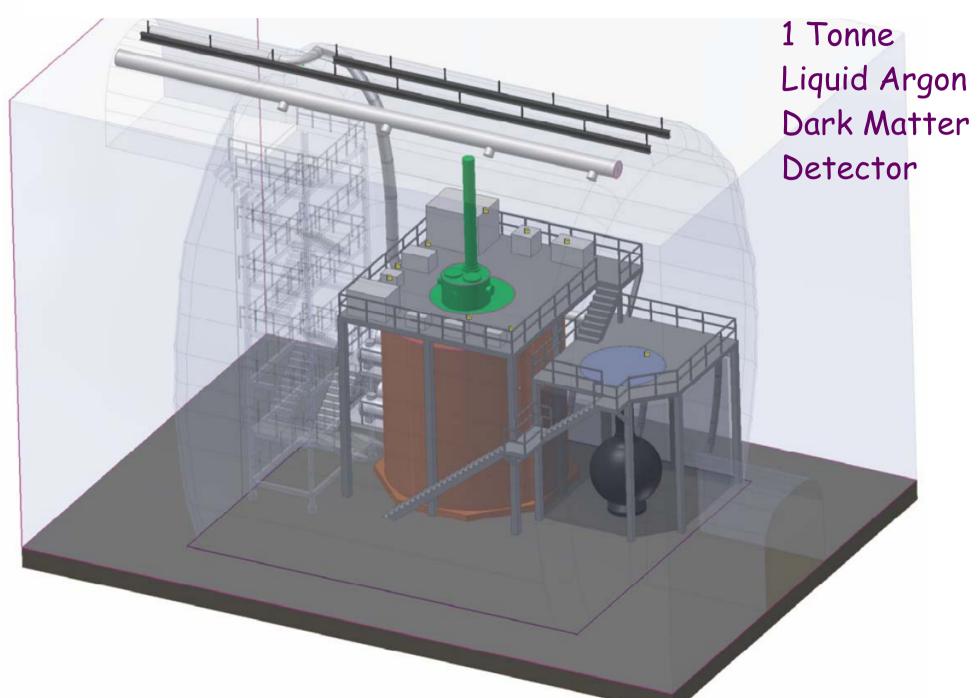
Future experiments that have expressed interest in SNOLAB


COUPP	DM	CF ₃ I BC
COBRA	OnuBB	Cd, Te Crystals

PICASSO (Dark Matter)

SNEAB

- Search for Spin Dependent Dark Matter Interactions using superheated droplets of freon in a gel matrix. International collaboration of Canada and US (SNOLAB Participation: Laurentian, Montreal, Queen's).
- Phase IB, II: Currently operational in the 60T tank area with 4 litre detector modules. Expand to 32 x 4 litre modules. Upgrade later to 8 x 30 litre modules. Assembly of detector modules may be done in the SNOLAB surface facility.
- Phase IIB: Upgrade to $32-64 \times 30$ litre modules in Ladder Labs
- Phase III: 100 kg deployment possibly in the Cube Hall.



DEAP/CLEAN

DEAP (Dark Matter)

SNEAB

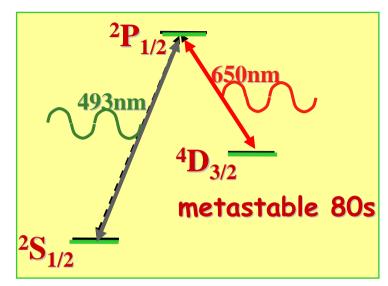
- Search for Dark Matter by looking for interactions of WIMPS (Weakly Interacting Massive Particles) with Liquid Argon. Can distinguish WIMP signal from backgrounds by the scintillation light signal.
- Collaboration consists of Canadian and US institutions with ~40 physicists (SNOLAB Participation by Carleton, Queen's, Site).

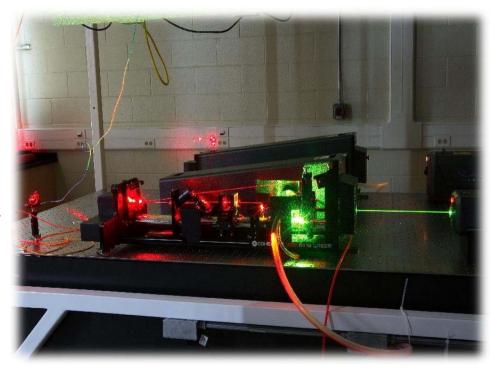
DEAP-1

- Setting up for research and development activities in the SNOLAB surface facility.
- 7kg detector currently taking data at Queen's University.
- To be deployed in the old SNO control room in August.

DEAP/CLEAN

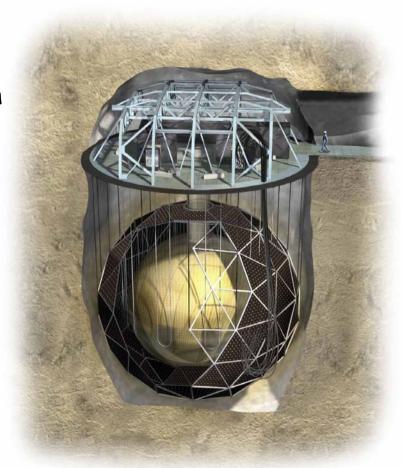
 a 1 Tonne fiducial volume detector to be deployed in the Cube Hall beginning in 2008 or 2009.





EXO (Double Beta Decay)

- Search for neutrinoless double beta decay in Xenon (¹³⁶Xe). Greatly reduce backgrounds by looking for the daughter nucleus ¹³⁶Ba using laser fluorescence tagging. US and Canadian Collaboration (SNOLAB Participation by Carleton and Laurentian).
- Research on the laser tagging presently being carried out in the SNOLAB surface facility.
- Two detector concepts are being considered:
 - Cryogenic liquid detector (to be deployed at WIPP in the US).
 - A gaseous detector to be deployed in the SNOLAB Ladder Labs.


SNO+ (solar v, $0v\beta\beta$, geo v)

- Solar Neutrinos, Neutrinoless Double Beta Decay, Geo-neutrinos, Supernova Neutrinos and Reactor Reutrinos.
 - Reuse the SNO detector replacing the D_2O with liquid scintillator.

Collaboration 36 Faculty, RAs, students, Canada, USA, Portugal, UK, Germany (SNOLAB participation by Carleton, Laurentian, Queen's, Site).

- Partial funding in place to be used for
 - Design of AV hold down and process systems.
 Prepare the detector for conversion to scintillator operations
- Research and development of scintillator purification and neodymium purification in SNOLAB surface facility fall 2007.
- Conversion of AV and SNO Cavity spring/summer 2008. Fill with scintillator in 2009.

Outfitting

- C2 Outfitting Contractor, Comstock
 - Mobilizing over the last few weeks
 - Full activities have begun.
 - Proceeds in parallel with the Phase II excavation.
 - Completion of Phase I end of March 2008
 - Return for Phase II Outfitting after excavation complete
 - Cryopit
 - New Chillers
- SNOLAB
 - Cleaning, painting, cabling, chilled water systems over hall, renovating old SNO Personnel Drift.

Schedule

	2007											2008													2009										
Ja	n Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct		
SI	10V	eco	mmi	ssic	nin	9																													
Da	20 R	etur	n																																
					Con	nple [.]	te [esc	lina	tion																									
Sl	NOL	4B <i>C</i>	ons	tru	tio	n																													
Pł	iase :	I Ex	cava																																
					Pho	se I	II E	xca	vatio	on																							_		
					Pho	se]	[O	ıtfit	tting																										
																					Pho	ise I		Outf	iting										
																				Sou	uth	Drif	t R	eno	vatio	n									
E;	(peri	men [.]	ts																																
Ρī	CAS	5O-	TR	TT	(2-3	3ka)	[SI	NO	U+l'																										
						J., g)	[0,									PIC	:AS	50-	IIB	(25	ikg)	[La	dde	r Lo	abs]										
							SN	0+	[SN	0	Cave	rn]																							
							NE	A D	1 FC	NIC) Co		I D		<u> </u>																				
							טבו	AP-	1 [3	OINC	Co	ntro	I K	oom		DE	AP/	CLE	AN	[Cut	oe f	-lall]													
																EX	0 2	00k	g [L	add	er l	_abs]												

Summary

- Phase I excavation (Ladder Labs, Cube Hall) almost complete.
- Phase I outfitting beginning.
- Optimistic for Phase II funding and beginning excavation with bridging funds.
- This Summer: Arrival of DEAP-1 and ramp up of R&D at site (EXO, SNO+, DEAP, PICASSO).
- This Fall: begin conversion of SNO infrastructure to SNO+.
- Spring 2008: SNOLAB Phase I ready for occupancy. Relocate personnel facilities to new laboratory entrance. Conversion of existing SNO personnel space to laboratory space. Begin construction activities for incoming experiments in Ladder Labs and Cube Hall.
- Mid 2009: SNOLAB Phase II ready for occupancy.

SNOLAB 2007 Workshop

Workshop Home Motivation Programme Participants Committees Travel

Register for workshop Register for an underground tour

AUGUST 21-23, 2007

Welcome to the SNOLAB2007 Website

We look forward to welcoming many scientists to discuss the opportunities for underground science at SNOLAB. Please find detailed information in the links above and an online registration form. These pages will expand as we approach August and plans are made final.

Tuesday, August 21: One or two tours depending on demand.

Wednesday, August 22: Workshop and dinner.

Thursday, August 23: Workshop.

