The COBRA Double Beta Decay Experiment

> Brian Fulton University of York, England

On behalf of the COBRA collaboration

DBD07, Osaka

Who we are

The experimental concept

What has been achieved so far

The next steps

Who we are

COBRA collaboration

University of Sussex University of Warwick University of Liverpool University of York University of Birmingham Rutherford Appleton Laboratory

University of Dortmund Material Research Centre Freiburg

Laboratori Nazionali del Gran Sasso

University of Bratislava

Washington University at St. Louis

University of Surrey (UK), University of Hamburg (Germany), Jagellonian University (Poland), University of Prague (Czech Republik), Louisianna State University (USA)

The experimental concept

The COBRA Concept K. Zuber, Phys. Lett. B 519,1 (2001)

CZT 0-neutrino Beta-decay Research Apparatus

Build up a large array of **CdZnTe** semiconductor detectors (9 double beta decay isotopes)

Isotopes

Decay mode

Zn70 Cd114 Cd116 Te128 Te130 Zn64 Cd106 Cd108 **Te120**

0.62 28.7 7.5 31.7 33.8 48.6 1.21 0.9 0.1

B-B-B-B-B-B-B-B-B-B- $\beta + /EC$ $\beta + \beta +$ EC/EC $\beta + /EC$

Advantages

- Source = detector
- Semiconductor (Good energy resolution ~1%)
- Room temperature
- Modular design (Coincidences)
- Several isotopes and decay modes at once
- Industrial development of CdTe detectors
- ¹¹⁶Cd above 2.614 MeV
- Tracking (Solid state TPC)

Experimental Requirements

- $64,000 \ 1 \text{cm}^3 \ \text{crystals} = 418 \ \text{kg}$
- 90% enriched in ¹¹⁶Cd
- Backgrounds < 0.001 count keV⁻¹kg⁻¹year⁻¹
- Energy Resolution < 2%

Energy Resolution

Resolution of $\sigma=0.8\%$ at 2.8 MeV

- Only electron signal read out (CPG technology)
- Possible improvements: cooling, new grids
- Better detectors are available

What has been achieved so far?

Proof of concept Stage (2004-2006)

4 detector set up in Gran Sasso

Cd113 half-life (4-fold forbidden decay) C. Goessling et al. Phys. Rev C, 72, 064328 (2005)

First COBRA Double beta results

T. Bloxham et al. Phys. Rev C, in press

World best limits on ⁶⁴Zn and ¹²⁰Te

Isotope	Decay	$T_{1/2}$ limit (years)				
		This work	World Best			
$\beta^{-}\beta^{-}$ decays						
^{116}Cd	to g.s	$3.14{\times}10^{19}$	$1.7{ imes}10^{23}$ [13]			
¹³⁰ Te	to g.s	9.92×10^{19}	1.8×10^{24} [14]			
¹³⁰ Te	to $536 \mathrm{keV}$	3.73×10^{19}	9.7×10^{22} [15]			
¹¹⁶ Cd	to $1294 \mathrm{keV}$	4.92×10^{18}	2.9×10^{22} [13]			
¹¹⁶ Cd	to 1757 keV	9.13×10^{18}	1.4×10^{22} [13]			
⁷⁰ Zn	to g.s	2.24×10^{17}	9.0×10^{17} [16]			
¹²⁸ Te	to g.s	5.38×10^{19}	1.1×10^{23} [17]			
¹¹⁶ Cd	to $2112 \mathrm{keV}$	1.08×10^{19}	6.0×10^{21} [13]			
¹¹⁶ Cd	to 2225 keV	9.46×10^{18}	1.0×10^{20} [†] [18]			
$\beta^+\beta^+$ decays						
⁶⁴ Zn	$0\nu\beta^+$ EC to g.s.	2.78×10^{17}	2.4×10^{18} [16]			
⁶⁴ Zn	0ν ECEC to g.s.	1.19×10^{17}	7.0×10^{16} [16]			
¹²⁰ Te	$0\nu\beta^+$ EC to g.s.	1.21×10^{17}	2.2×10^{16} [19]			
120 Te	0ν ECEC to g.s.	$2.68{ imes}10^{15}$	-			
¹²⁰ Te	0ν ECEC to 1171keV	$0.72{ imes}10^{15}$	-			
¹⁰⁶ Cd	$0\nu\beta^+\beta^+$ to g.s.	4.50×10^{15}	2.4×10^{20} [20]			
¹⁰⁶ Cd	$0\nu\beta^+$ EC to g.s.	7.31×10^{18}	3.7×10^{20} [20]			
¹⁰⁶ Cd	0ν ECEC to g.s.	5.70×10^{16}	1.5×10^{17} [21]			
¹⁰⁶ Cd	$0\nu\beta^+\beta^+$ to 512keV	1.81×10^{17}	$1.6{ imes}10^{20}$ [20]			
¹⁰⁶ Cd	$0\nu\beta^+$ EC to 512keV	9.86×10^{17}	2.6×10^{20} [20]			

TABLE II: 90% confidence limits obtained for all decays analysed in this work with conservative systematic uncertainties applied, compared to the world best limits. New world best values from this work are shown in bold. [†]Quoted limit is 68% not 90%.

Samples measured at LNGS Activities (mBq/kg)

detectors	pertinax	pertinax	paint	copper
	(base plate)	(grid)	(passivation)	
<47	29	18	1100	<2.1
$<\!60$	32	15	730	< 2.3
$<\!51$	170	66	2100	< 2.5
$<\!210$	250	<92	1100	< 100
< 1200	480	< 180	1600	< 47
$<\!\!5$	12	2	170	< 1.4
$<\!260$	330	340	6900	< 11
< 19	<4	<2	< 20	< 0.6
40	650	19	15	< 0.9
	detectors <47 <60 <51 <210 <1200 <5 <260 <19 40	detectors pertinax (base plate) <47	detectors pertinax (base plate) pertinax (grid) <47	$\begin{array}{c c c c c c c c } detectors & pertinax & pertinax & paint \\ (base plate) & (grid) & (passivation) \\ \hline <47 & 29 & 18 & 1100 \\ <60 & 32 & 15 & 730 \\ <51 & 170 & 66 & 2100 \\ <210 & 250 & <92 & 1100 \\ <210 & 480 & <180 & 1600 \\ <5 & 12 & 2 & 170 \\ <260 & 330 & 340 & 6900 \\ <19 & <4 & <2 & <20 \\ 40 & 650 & 19 & 15 \\ \end{array}$

Main problem is passivation paint used on detectors

New Passivation Paint

Decrease x10 Had expected x10³ Next level of background (Rn?)

Test Stage (2006-present)

64 detector set up in Gran Sasso

The first layer

Installed at LNGS in summer 2006

The first layer - some spectra

The first layer - Coincidences

Counts 10^{4} $10^{3} =$ 10^{2} 10 4.5 Number depositions between 180 and 10000keV 4.5 4 3.5 2.5 1.5 600 500 400 300 200

2.5

35

Coincidences around Det 9

Example: **Powerful tool!!!** 3-coincidence

Just starting to analyse/understand the power of this

Coincidences

Simulation of energy deposition in a 5 x 5 detector array for a 2614 keV gamma starting from in central detector

Spatial Coincidences

¹¹⁶Cd $0\nu\beta\beta$ is single crystal event ~64% of the time

 $\beta - \gamma$ from natural background

Beta and gamma generally in different crystals Reduce ²³²Th chain events from crystals by >50%

¹⁰⁶Cd $\beta^+ \beta^+$ decay

Four 511keV gammas plus beta

Completely clean signal

Spatial Coincidences

Can also identify decays to excited states (may give handle on physics mechanism)

 $^{116}Cd \rightarrow ^{116}Sn (2^+, 1294keV)$

1511keV β^{-} pair

1294keV de-excitation γ

Timing Coincidences

The major contribution to ²³⁸U spectrum at 2–3MeV is the fast $\beta - \alpha$ decay: $2^{14}\text{Bi} \xrightarrow{214}\text{Po} \xrightarrow{210}\text{Pb}$

endpoint 3.3MeV, accounts for >70% events in 2-3MeV region from ²³⁸U chain 7.7MeV alpha half-life = **164.3µs**

>40% efficiency for tagging ²¹⁴Bi events originating inside the crystals

Observation of ²¹⁴Bi events

The next steps

Two main approached to double beta decay

Pixellated CdZnTe detectors

Pixel CZT- A solid state TPC

Massive BG reduction by particle ID, 200µm pixels (example simulations):

 α = 1 pixel, β and $\beta\beta$ = several connected pixel, γ = some disconnected p. (or different detector)

eg. Could achieve nearly 100% identification of ${}^{214}\text{Bi}$ events (${}^{214}\text{Bi} \rightarrow {}^{214}\text{Po} \rightarrow {}^{210}\text{Pb}$)

Beta with endpoint 3.3MeV 7.7MeV α with life-time = 164.3μs

Rejection power of pixels

T. Bloxham, M. Freer, Nucl. Inst. Meth. A (2007)

Simulation for 3mm thick detector with 16 x 16 200µm pitch pixels

²³²Th and ²³⁸U chains

One/two electrons
....plus alpha rejection
.....plus β-α time correlation

Suggests a background reduction of 1000!

Tests of 16×16 1.6mm pixel detectors

Two detectors with 200µm pixillation being produced

Looking at new generation ASICs for readout of these

Single Pixel ⁵⁷Co spectrum

Other current activities

Monte Carlo

Sophisticated MC based on GEANT4, written in C++ Signal (DECAY0) and background

Shielding and Veto

- Simulated LNGS neutron flux
- ~3x10⁻⁷ counts/year/kg/keV in the crystals.
- <1 neutron per year! (in 64000 detectors)

D. Stewart et al., accepted by Nucl. Inst. Meth. A

Understand n-capture backgrounds

Digital pulse shape readout

(improved resolution and position from induced signals)

First results from CZT detectors

Materials studies to improve detectors

SUMMARY

- We have established a potential approach for neutrinoless double beta decay offering some advantages
- We have a test setup at Gran Sasso which will allow us to improve backgrounds and explore the advantage of concidences
- Starting a major programme to develop pixillated CZT detectors which would provide a tracking capability to give an enormous background reduction

Eventual goal would be a 64,000 detector experiment

And we have dreams.....

