

The neutrinoless double beta decay in ⁷⁶Ge at GERDA

Peter Grabmayr

for the GERDA Collaboration

Eberhard Karls Universität Tübingen Germany

Eberhard Karls Universität Tübingen

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Content

- neutrinoless double beta decay
- consequences for neutrino properties
- ⁷⁶Ge experiments and GERDA
 - principle
 - background and sensitivity
 - setup and status
- Schedule and Outlook

Neutrinoless 2^β decay

Osaka, June 11, 2007

Neutrino masses

Neutrino oscillations:

mass is finite (Suzuki, INPC07)

 Δm^2_{solar} = 8,2 10⁻⁵ eV² Δm^2_{atm} = 2,7 10⁻³ eV²

still need:

- absolute mass scale
- hierachy

Tritium β decay :< 2,2 meV</th>Cosmology :< 1,0 meV</td> $\beta\beta$ decay :< 0,4 meV</td>

absolute mass scale

absolute mass scale

Osaka, June 11, 2007

⁷⁶Ge experiments

previous experiments: HDM (5 det) and IGEX (3 det)

Klapdor-Kleingrothaus et al. Phys Lett B586 (2004) 198

71,7 kg[.]y

T_{1/2}> 1,9 ·10 ²⁵ y (90%CL) (0,69 - 4,18)

Aalseth et al. Phys Rev D65 (2002) 092007 **8,9 kg·y**

T_{1/2}> 1,6 ·10 ²⁵ y (90%CL)

Matrixelements

V.Rodin & A. Faessler (NPA)

J.P. Schiffer (INPC07)

The Difference between the Valence Neutrons of ⁷⁶Ge and ⁷⁶Se

The observed differences in p and $f_{s/2}$ occupations are **much larger** than the values used in the calculations. The difference is less for $g_{s/2}$.

What does this mean for the matrix elements in $(0\sqrt{2\beta})$?

At present this is not clear - the

		⁷⁰ Se- ⁷⁰ Ge Difference in	Neutron Numbers	13
1. 1.	Orbits	Measured	ORPA	
		PRELIMINARY!		
		and the second state of th	A COMPANY OF A COM	10

⁷⁶Ge experiments

⁷⁶Ge: Source == Detector GFRDA: $Q_{\beta\beta} = 2039 \text{ keV}$ large mass of enriched material 7.44% -> ~86% high energy resolution <4 keV separate $0\nu\beta\beta$ from $2\nu\beta\beta$ set smaller ROI <10⁻³ cts/(kg·y·keV) low background passive : LNGS @ 3800 m.w.e. (reduce μ) Watertank, LAr (avoid n, cosmogenic) selection of material (reduce Th,U) active: Muon veto segmentation, anti-coincidence PSA Osaka, June 11, 2007 P. Grabmayr

GERDA @ LNGS

Tokyo, June 5, 2007

GERDA – the schema

GERDA

G. Heusser, Ann. Rev. Nucl. Part Sci. 45 (1995) 543

"...low Z material around detector..." "...mount the Ge diodes directly in cryo-liquid"

reduced radioactivity of environment less muon-induced background

Ge diodes – enriched to 86% liquid argon stainless steel cryostat water to moderate neutrons and as muon veto (Cerenkov)

=>HdM, Majorana: closed compact shielding

Setup: HdM versus GERDA

non-enriched prototype

~ 12 g vs. ~ 2 kg P. Grabmayr

Osaka, June 11, 2007

HdM

Setup: HdM versus GERDA

~ 12 g vs. ~ 2 kg

Osaka, June 11, 2007

Super-structure and Watertank

Hall A @ LNGS clean room on top water tank as active muon veto (66 PMTs) SS cryostat with copper shield, filled with LAr (~70m³)

Osaka, June 11, 2007

GERDA - experimental setup

Osaka, June 11, 2007

GERDA – the collaboration

A.M. Bakalyarovⁱ, M. Balata^a, I. Barabanov^g, C. Bauer^c, E. Bellotti^f, S. Belogurov^{g,h}, S. T. Belyaevⁱ, M. Bernabe-Heider^c, A. Bettini^k, L. Bezrukov^g, V. Brudanin^b, D. Budjas^c, A. Caldwell^j, C. Cattadori^{a,f}, O. Chkvorets^c, E. V. Demidova^h, A. Di Vacri^a, V. Egorov^b, A. Gangapshev^g, J. Gasparro^m, P. Grabmayr^l,
G. Y. Grigorievⁱ, K. N. Gusevⁱ, V. Gurentsov^g, W. Hampel^c, M. Heisel^c, G. Heusser^c, W. Hofmann^c, M. Hult^m, L.V. Inzhechikⁱ, M. Jelen^j, J. Jochum^l, M. Junker^a, S. Katulina^b, J. Kiko^c, I.V. Kirpichnikov^h, A. Klimenko^{b,g}, M. Knapp^l,
K.T. Knoepfle^c, O. Kochetov^b, V.N. Kornoukhov^{g,h}, K. Kroeninger^j, V. Kusminov^g, M. Laubenstein^{a,f}, V.I. Lebedevⁱ, M. Lindner^c, X. Liu^j, J. Liu^j, B. Majorovits^j,
G. Marissens^m, I. Nemchenok^b, L. Niedermeier^l, J. Oehm^c, L. Pandola^a, P. Peiffer^c, A. Pullia^f, F. Ritter^l, C. Rossi Alvarez^k, V. Sandukovsky^b, S. Schoenert^c,
J. Schreiner^c, U. Schwan^c, B. Schwingenheuer^c, M. Shirchenkoⁱ, H. Simgen^c,
N. Smale^c, A. Smolnikov^{b,g}, F. Stelzer^j, A.V. Tikhomirovⁱ, C. Tomei^a, U. Trunk^c, S.V. Zhukovⁱ, F. Zocca^f, G. Zuzel^c

39 FTE

INFN LNGS, JINR Dubna, MPI Kernphysik Heidelberg, Jagellonian U. Cracow, U. Milano-Bicocca, INR Moscow, ITEP Moscow, Kurchatov Institute, MPI Physik München, U. Padova, U. Tübingen, IRMM Geel

Stainless Steel Cryostat

screening of SS sheets from different producers

(~27 tons of SS 1.4571) units: mBq/kg for ²²⁸Th and ⁶⁰Co

Stainless Steel Cryostat

Double walled SS container

reduce Cu shield from 40 to 16 t $(1t \sim 8000 \in)$

3 – 6cm Cu

Material screening

GeMPI Corrado

several systems at LNGS & MPI

steel Cuflon preamps O-rings

Enrichment and Transport

Krasnoyarsk (~Baykal) 37.5 kg enriched GeO₂

Geel, n activation precise determination of abundance

zone refinement tested on depleted Ge

n-capture on ⁷⁶Ge

Muon induced backgrond

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COSt

0

Muon veto necessary

Osaka, June 11, 2007

⁶⁸Ge

⁶⁹Ge

38CI

40CI

77Ge/77mGe

300 350

50

100

150

200

φ (deg)

250

Water Cerenkov veto

66 PMTs (ETL, 8") VM2000 (3M,WLS+reflector) 3PMT @ 0,5 pe ~99%

Cerenkov veto

ETL 8" inside capsule with oil

+2mm μ metal-shield

Osaka, June 11, 2007

4 rings on wall+ 2 rings on bottom+ pillbox

All HDM & IGEX detectors

Refurbishing Ge diodes in GDL

GDL: Installation of clean room for diode preparation and tests in LAr

Prototype testing in LN & LAr

GERDA – LNGS SC meeting, April 18/19, 2007

Osaka, June 11, 2007

Physics results in GDL

Within 10 days a limit for 0vECEC on ³⁶Ar: (liquid Ar contains 0,336% ³⁶Ar; signature: $E_{\gamma} = Q - E_{K} - E_{L} = 430 \text{keV}$) $4^{0}K$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $2^{1.5}$ $1_{0.5}$ $2^{1.5}$ $2^{1.5$

Tokyo, June 5, 2007

segmentation

Discriminate e/γ by event type: single- or multi-site

by anti-coincidence between diodes

& segments (6x3 fold)

Segmentation

I. Abt et al., NIM A accepted

1400 1600 1800 2000 2200 2400 2600 E [keV]

Veto through scintillation in LAr

P. Grabmayr

energy (MeV)

Schedule and Outlook

GERDA was constituted in 2004 ~80 persons, 39 FTE in 14 institutions

- Refurbishment of Hall A complete
- Safety concept accepted by LNGS
- Watertank & Cryostat ordered in 2006 installation by end 2007, (to be) complete in 2008
- Muonveto: PMT capsules being tested
- Lock, clean room and infrastructure being tendered

Prototypes of preamps and cables available for Phase I prototyping for Phase II DAQ & slow control

Schedule and Outlook

GERDA

detectors:

```
Phase I
enriched detectors (HDM & IGEX)
presently being refurbished (18.7 kg)
15 kg non enriched detectors available
```

Phase II 37.5 kg enriched GeO₂ procured segmented prototype successfully tested zone refinement for first 'depleted detector'

Schedule and Outlook

Finish setup by end of 2008

verify background level of < 10⁻² cts/(kg·y·keV) for Phase I

count for one year with 17.9 kg ⁷⁶Ge for first result on 0v2ββ if he is right

meanwhile: first limit for 0vECEC on ³⁶Ar $T_{1/2} > 1,9.10^{18}$ y (68% C.L.) Osaka, June 11, 2007 P. Grabmayr

