BOREXINO - Status and Calibration

International Workshop on "Double Beta Decay and Neutrinos"
Osaka, June 12, 2007

Christian Grieb for the Borexino Collaboration
Virginia Tech
Borexino Collaboration

- College de France (France)
- Technische Universität München (Germany)
- JINR Dubna (Russia)
- Kurchatov Institute Moscow (Russia)
- MPI Heidelberg (Germany)
- Jagellonian University Cracow (Poland)
- INFN – Milano (Italy)
- INFN – Genova (Italy)
- INFN – Perugia (Italy)
- INFN – LNGS (Italy)
- Princeton Univeristy (USA)
- Virginia Tech (USA)

NSF funded

Christian Grieb, Virginia Tech, June 2007
• Designed to spectroscopically measure low energy solar neutrinos, especially ^7Be
• Liquid Scintillator Spectrometer
• $\nu + e^{-} \rightarrow \nu^{'} + e^{-}$
 • Charged Current
 • Neutral Current
Borexino

\[7\text{Be} + e^- \rightarrow 7\text{Li} + \nu_e \]

Monochromatic \(E_\nu = 862 \text{ keV} \)

\(\Phi_{SSM} = 4.8 \times 10^9 \text{ v/sec/cm}^2 \)

Expected rate (LMA) is \(\sim 35 \) counts/day between 0.25-0.8 MeV

\[\nu_e \quad \leftrightarrow \quad \nu_x \]

\[v - e \text{ scatt. CC} \]

\[v - e \text{ scatt. NC} \]

\[\sigma \approx 5.3 \times 10^{-45} \text{ cm}^2 \]

\[\sigma \approx 1 \times 10^{-45} \text{ cm}^2 \]
Science in Borexino

- Measure 7Be solar neutrinos (0.25-0.8 MeV)
 - Measured vs MSW-LMA predicted event rate
 - $1/r^2$ solar signature

- Study CNO and pep (~1-2 pep ev/d) neutrinos (0.8-1.3 MeV) (rejection of 11C cosmogenic background – proven in CTF hep-ex/0601035)

- Geoneutrinos (10 – 30 ev/year)

- Supernova Neutrinos (~120 ev from GC supernova)

- ...
Publications (since 2002)

- The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment.
 - J. Benziger et al. Feb 2007: physics/0702162
- Supernova neutrino detection in Borexino.
- Search for electron antineutrino interactions with the Borexino counting test facility at Gran Sasso.
- Experimental scintillator purification tests with silica gel Chromatography.
- Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos.
- Radon permeability through nylon at various humidities used in the Borexino experiment.
- New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility
- Ultra-traces of 226Ra in nylon used in the Borexino solar neutrino experiment.
- A Sampling Board Optimized for Pulse Shape Discrimination in Liquid Scintillator Applications
- The measurements of 2200 ETL9351 type photomultipliers for the Borexino experiment with the photomultiplier testing facility at LNGS
- The photomultiplier tube testing facility for the Borexino experiment at LNGS
- Precision measurements of time characteristics of the 8" ETL9351 series photomultiplier
- Light concentrators for Borexino and CTF
- A multiplexed optical-fiber system for the PMT calibration of the Borexino experiment.
• **Search for the Solar pp- neutrinos with an upgrade of CTF detector**
 • Smirnov O., Zaimidoroga O., Derbin A.

• **Setting of the Predefined Multiplier Gain of a Photomultiplier.**
 • O. Ju. Smirnov

• **New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Prototype of the Borexino Detector**

• **Study of the neutrino electromagnetic properties with the Prototype of the Borexino Detector**

• **New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility**

• **Search for electron decay mode e → γ + ν with prototype of Borexino detector.**

• **Measurements of extremely low radioactivity levels in BOREXINO.**
 • Astroparticle Physics 18 (2002) 1.

• **Science and Technology of Borexino: A Real Time Detector for Low Energy Solar Neutrinos**
 • Astroparticle Physics 16 (2002) 205.

• **Search for neutrino radiative decay with a prototype Borexino detector**
 • Derbin A., Smirnov O.

• **Resolutions of a large volume liquid scintillator detector.**
 • O. Ju. Smirnov.
 Instruments and Experimental Techniques, 2003 No 2

• **Effects of absorption and reemission of photons in large scintillation counters on the quantities measured by an observing phototubes.**
 • G. Ranucci.

Borexino Christian Grieb, Virginia Tech, June 2007
Main challenge in Borexino: Radiopurity → Shell Structure

Components of the detector:

- Scintillator: 1,2,4-Trimethylbenzene (PC) + PPO (1.5 g/l) (300 t, 100 t fiducial mass)
- Nylon inner vessel (d = 8.5 m) - Nylon outer vessel
- Buffer liquid: PC + DMP (1040 ton)

- Stainless steel sphere (d = 13.7 m)
- ~2200 inner phototubes – ~1800 with light guides
- Outer Muon veto: 210 PMTs + tyvek panels
- External buffer of ultra-pure water
- Water Tank
- Calibration equipment
- Electronics and DAQ
View of SSS with PMTs and Light Guides Installed
Nylon Vessels in SSS prior to inflation (2004)
Inflated Nylon Vessels in SSS

Borexino

Christian Grieb, Virginia Tech, June 2007
Filling with Ultrapure Water

Borexino
Christian Grieb, Virginia Tech, June 2007
Water (on top) is replaced by Scintillator
May 15, 2007: Borexino completely filled with Scintillator!
Motivation for Calibration

Precision neutrino science:
- Systematics need to be known
- \(1/r^2\) solar signature

Challenges in Borexino:
No event signature (only spectroscopic)
A. Radiopurity
 Requirements defined design, construction and filling
B. Energy
 Quenching – different energy response to \(\alpha,\beta,\gamma\) \(\Rightarrow\) Cal. sources
C. \(\alpha/\beta\) separation (pulse shape discrimination)
 is critical due to \(^{210}\text{Po}\) + other \(\alpha\) sources at low energies
 spatial and energy dependence \(\Rightarrow\) Cal. sources
D. Fiducial Volume \(\Rightarrow\) Cal. sources
 Definition of absolute mass
 Solar signal \(1/r^2\) (Stability of FV over time)
 Characterization of external background
Borexino Calibration

A variety of calibration and monitoring systems are planned:

• Making use of intrinsic radioactivity (14C, Radon BiPo, neutron capture, …)

• Laser pulses distributed to all PMT’s with a fiber optics splitting system
 ⇒ Timing calibration
 ⇒ Gain adjustment via detection of the single photoelectron peak

• External sources (Th) located in the SSS close to the light guides
 ⇒ Check the stability over time of the overall detector response

• Internal sources inside the scintillator (Virginia Tech Source Calibration System)
 ⇒ Position reconstruction calibration
 ⇒ Energy calibration (and spatial dependence)
 ⇒ α/β Discrimination (" ")
• CCD Cameras with capability to precisely locate objects inside the detector; a ≤ 2% uncertainty in the fiducial volume definition translates into ~ ±2 cm (part of the Virginia Tech Source Calibration System)

• Laser beams with different wavelengths through the buffer and laser excitation of the scintillator
 ⇒ Stability monitoring of the optical properties
 ⇒ Tuning of Monte Carlo

• Blue LED’s + fibers for the outer muon veto detector
Novel approach to source calibration system:
A) Mechanical insertion to approximate position
B) Precise optical position determination
Source Insertion System (SIS)

- Maps out cylinders in IV
- Neutrally buoyant in scintillator
- Source changing is box at same pressure as IV
- Only approximate source position
Source Insertion System
Calibration Sources

- Possible α-sources:
 - ^{238}U (4.2 MeV), ^{232}Th (4.0 MeV), ^{222}Rn (5.6 MeV), ^{210}Po (5.4 MeV)
- Radon was used in the Borexino Counting Test Facility (CTF)
- U and Th have long half lives
 - Contamination concern
- Radon has short half life
 - Higher energy

- Sources are made with scintillator from inner vessel (IV)
- Vial is evacuated and loaded with source material
- Scintillator is then pumped from IV
- When it is sure that the scintillator being pumped is from the IV, source is loaded with scintillator
The Optical Source Locating System

Goals:
- Locate Internal Sources to +/- 2cm
- Locate Internal Fiber Optics
- Monitor Vessel Shapes
- Provide Photos for PR

Strategy:
- Mount cameras at approximately orthogonal positions and use triangulation to reconstruct position
- Use LEDs (with PMTs on, but trigger disabled) on objects to locate
- 7 cameras ➔ 14 independent numbers to determine x,y,z
Source Locating System

- Camera Kodak DC290 with additional fish-eye lens
- Mounted in Stainless steel housings
- The Borexino Counting Test Facility (CTF) was equipped with 3 cameras
- Borexino has 7 cameras installed
Pictures from the CTF

Featured in:
- Alitalia in-flight magazine
- INFN 50th anniversary book

- Cover of “Proceedings of the 5th International Topical Workshop at LNGS on Solar Neutrinos: Where Are the Oscillations?“
- Italian Photography Magazines
Control of Cameras and Lights

Software:

Hardware:

Cameras & Lights are controlled remotely, fully automated
Challenges

- Cameras are not pin-hole
- Cameras are multi-lens systems that project 3d space onto a 2d image
- CCD image plane may not be perpendicular to optical axis, lenses may be misaligned
- Installed Orientation of camera must be determined with pixel accuracy

⇒ The resulting image is distorted

Corrections are necessary
Camera Calibration - Strategy

- Each camera/lens system must be calibrated
- Fit camera roll, pitch, yaw
- Fit CCD x, y pixel offsets and scale
- Fit lens parameters
- Use known positions of PMTs
Roll, Pitch and Yaw

- **Roll**
- **Pitch**
- **Yaw**
CCD Offset and Scale

Optical axis

x and y offset

x

y
Radial & Decentering Correction for Optical Distortion

Radial correction:

\[r' = \sum_i c_i r^i \]

Decentering correction:

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 r' \cos \phi \\
 r' \sin \phi
\end{pmatrix} + p_1 \begin{pmatrix}
 r'^2 \\
 r'^2 + 2 r'^2 \cos^2 \phi
\end{pmatrix} + p_2 \begin{pmatrix}
 r'^2 \\
 r'^2 + 2 r'^2 \sin^2 \phi
\end{pmatrix} + 2 p_2 r'^2 \cos \phi \sin \phi + 2 p_1 r'^2 \cos \phi \sin \phi
\]

Borexino

Christian Grieben, Virginia Tech, June 2007
About 100 calibration pts / camera
Additional Correction: “Tweak”

Problem:
- Consumer Kodak camera DC290 with Nikon lens
- Focus and zoom not locked
- Each picture has x, y shift and scale factor which need to be corrected for on a case-by-case basis (without this one gets only ± 5 cm position)

Solution:
- Turn on in-camera LEDs for every picture.
 Use two points (four numbers) to correct scale and shift.
- The software can do this correction automatically, by finding known reference LEDs
Projection of rays from the six ‘other’ cameras. Their intersection should ideally be at a single point.
Largely automated system for source position reconstruction
VT Calibration System already in Use

Finding the Location of Nylon Vessel South Pole

Borexino

Christian Grieb, Virginia Tech, June 2007
Borexino

Determining the shape of the Nylon Vessels

Mark tangential interface of vessels

⇒ Calibration Software finds Position in space
VT Calibration System already in Use

Result:

Radii of Inner & Outer Vessel as a function of Φ

- Buoyancy is visible
- Use vessel shape for Position reconstruction
- Monitor vessel shape Over time (Background Interpretation)

Borexino

Christian Grieb, Virginia Tech, June 2007
Conclusions and Status

Borexino:

• The detector is filled & running.

VT Source Calibration System:

• The Source Locating System is fully operational
• With 7 cameras, +/- 2 cm seems obtainable ⇒ Fiducial Volume +/- 2%
• System is tested and works
• First uses to determine the Shape & Position of the vessels successful
• To be done:
 • Final Installation of Source Insertion Box
 • Production of calibration sources