Measuring the Neutrino Luminosity of the Sun & Search for Sterile Neutrinos

LENS & MINILENS

International Workshop on "Double Beta Decay and Neutrinos" Osaka, June 12, 2007

Christian Grieb for the LENS Collaboration Virginia Tech

LENS-Indium: Foundations

CC v-capture in ¹¹⁵In to excited isomeric level in ¹¹⁵Sn

Tag: Delayed emission of $(e/\gamma) + \gamma$ **Threshold:** 114 keV \rightarrow pp-v's ¹¹⁵In abundance: ~ 96% **CC-capture:** Faithful reproduction of v spectrum

LENS

Background Challenge:

- Indium-target is
 - radioactive! (t = $6x10^{14}$ y)
- ¹¹⁵In β-spectrum overlaps
 pp-v signal

Basic background discriminator:

Time/space coincidence tag Tag energy: $E_{v-tag} = E_{\beta max} + 116 \text{ keV}$ Requires spatial resolution of < 10cm

> ⁷Be, CNO & LENS-Cal signals not affected by Indium-Bgd!

> > Christian Grieb, Virginia Tech, June 2007

Indium β⁻-Background Structure – Space / Time coincidence

New Detector Technology -The Scintillation Lattice Chamber

Light propagation in GEANT4

Concept

Test of double foil mirror in liq. @~2bar

3D Digital Localizability of Hit within one cube

- \rightarrow ~75mm precision vs. 600 mm (±2 σ) by TOF in longitudinal modules
- \rightarrow x8 less vertex vol. \rightarrow x8 less random coinc. \rightarrow Big effect on Background
- \rightarrow Hit localizability independent of event energy

In-Background Rejection

Background rejection steps:

- 1. Time/space coincidence in the same cell required for trigger;
- 2. Tag requires at least three 'hits';
- 3. Narrow energy cut;
- 4. Tag topology: multi- β vs. Compton shower;
- Classification of events according to hit multiplicity;

Cut parameters optimized for each event

class -> improved efficiency;

Indium β⁻-Background Rejection - MC Results

Results of GEANT4 Monte Carlo simulation (cell size = 7.5cm)

	Signal (pp) y ⁻¹ t ln) ⁻¹	Bgd (In) y ⁻¹ (t In) ⁻¹	Reduction by ~3·10 ⁷
RAW rate	62.5	79 x 10 ¹¹	time/space
A. Tag in Space/Time delayed coincidence with prompt event in vertex	50	2.76 x 10⁵	coincidence
B. + ≥3 Hits in tag shower	46	2.96 x 10⁴	
C. +Tag Energy = 613 keV	44	306	
D. +Tag topology	40	13 ± 0.6	

 \Rightarrow Signal / Background ~3 with pp-v event detection efficiency 64%

Remember: only pp-v events affected by Indium Background, ⁷Be, pep and CNO Background-free

 \Rightarrow LENS is a feasible detector:

125t of liquid scintillator for ~2000 pp-v events in 5 years with full spectroscopic information plus ⁷Be, pep and CNO

Indium Liquid Scintillator Status

Milestones unprecedented in metal LS technology

LS technique relevant to many other applications

- Indium concentration ~8%wt (higher may be viable)
- 2. Scintillation signal efficiency (working value): 9000 hv/MeV
- 3. Transparency at 430 nm: L(1/e) (working value): 10m
- 4. Chemical and Optical Stability: at least 1 year
- 5. InLS Chemistry Robust

Basic Bell Labs Patent, filed 2001, awarded 2004

LENS Expected Result: Low Energy Solar v-Spectrum

>98% Flux <2MeV

LENS-Sol Signal = SSM(low CNO) + LMA x Detection Efficiency ɛ

> pp: ε = 64%⁷Be: ε = 85%pep: ε = 90%

→ Rate: pp 40 pp ev. /y /t ln → 2000 pp ev./ 5y/10t ln → $\pm 2.5\%$

→ Design Specification: S/N \ge 3

Access to pp v spectral shape for the first time

Solar Luminosity: Neutrino vs. photon

Measured *neutrino* fluxes at earth + oscillation physics ➡ nuclear reaction rates ➡ energy release in the sun

Energy Balance:

$$L_{\nu-\text{inferred}} \stackrel{?}{=} L_{h\nu}$$

Solar luminosity as measured by *photon* flux

Will be met under these conditions:

- 1. Fusion reactions are the sole source of energy production in the sun
- 2. The sun is in a quasi-steady state (change in 40,000 years is negligible)
- 3. The neutrino oscillation model is correct & no other physics involved;

From a single detector:

Test of astrophysics, solar model; Test of neutrino physics (LMA-MSW at low E, NSI, mass-varying vs, Θ_{13} , ...);

Neutrino inferred Luminosity of the Sun - Experimental Status

Predicted relative neutrino fluxes at the sun (SSM):

Μ	рр	0.91	
		⁷ Be	0.074
		(CNO	0.014)
Measured neutring	o fluxes at the earth:	⁸ B	0.00009
⁸ B	(SK, SNO) known very well		
⁷ Be + ⁸ B	(CI) sensitive mostly to ⁸ B		
pp + ⁷ Be + ⁸ B	(Ga)		
⁷ Be	(Borexino, Kamland – in the	future)	
⇒ in principle can d	educe pp-v flux		

Problem: disentangling fluxes from individual neutrino sources

$$L_{\nu(\text{inferred})} / L_{h\nu} = 1.4 \binom{0.2}{0.3}_{1\sigma} \binom{0.7}{0.6}_{3\sigma}$$

LENS

$$L_{\nu(\text{inferred})}/L_{h\nu} = 1.2(0.2)$$

J.N.Bahcall and C.Peña-Garay, JHEP 0311, 4 (2003)

R.G.H.Robertson, Prog. Part. Nucl. Phys. 57, 90 (2006)

Experimental status - No useful constraint!

Christian Grieb, Virginia Tech, June 2007

Probing the Temperature Profile of Energy Production in the Sun with LENS

Neutrino Production

J. N. Bahcall and R. Ulrich, Rev. Mod. Phys. 60, No. 2, p. 297 (1988)

J. N. Bahcall and R. Ulrich, Rev. Mod. Phys. 60, No. 2, p. 297 (1988)

Temperature in the Solar Core impacts Neutrino *Energies, not just relative fluxes*

Relative kinetic particle energies add to the Q-value of capture and fusion reactions.

Not all energies contribute evenly:

5. $E_0 = 10.73 \text{ keV} \cdot (171.3 \cdot 10 \text{ K})^2$

J.N. Bahcall, *Phys. Rev. D* 44(6), 1644(1991)

pp- and pep neutrino production temperature and related Gamow peak energy:

⁷Be electron capture: maxwellian energy distribution shifts mean energy of ⁷Be v line by Δ <E> ~ 1.29 keV

J.N. Bahcall, Phys. Rev. D 49(8), 3923 (1994)

pep: combination, delta $\Delta < E > \sim 6.6 \text{ keV}$

LENS

Probing the Temperature Profile of Energy Production in the Sun with LENS

C. Grieb and R.S. Raghavan, Phys.Rev.Lett.98:141102,2007

Conclusion: Slightly improved LENS can detect the predicted Gamow shift in the pp-v endpoint $\Delta E=5.2$ keV with 95% confidence.

LENS-Cal Neutrino Sources

Source	DecayMode /Produced by	τ	E _v (keV)	E _e = E _v -0.114 keV	Background
³⁷ Ar Haxton	EC/ (n, α)	50.5 d	814(100%)	700	Int. Bremss. 0-814; ~Σ5x10 ⁻⁴ hv/decay
⁵¹ Cr RSR Kuzmin	EC/ (n ,γ)	40.1 d	751 (90%)	637	320γ (10%) Imp. γ's (MeV) %??
⁶⁵ Zn Louis Alvarez	EC(β ⁺)/ (n,γ)	353 d	1350 (50%)	1236	1115 γ (50%); 511 γ (2%); Imp. γ's.

Neutrino Energy typically 700 keV

Sterile Neutrinos – Physics beyond the Standard Model

•Fourth (fifth) mass state with high mass splitting triggered by LSND appearance of \overline{v}_e from \overline{v}_μ beam at *short* base line ~30m!

- •Implies $\Delta m^2 \sim 1 eV^2$
- Also motivated from cosmology

LENS

LENS - Unique Test for Sterile Neutrinos

Already planned: LENS-Cal MCi Cr Source in LENS to calibrate v_e capture cross section on ¹¹⁵In

For sterile neutrinos

Active - Sterile oscillation of monochromatic 753 keV pure e-flavored neutrinos via Spatial distribution of flavor survival in ~5 m

Active-Sterile Oscillations

Christian Grieb, Virginia Tech, June 2007

Active - Sterile Neutrino Oscillations in LENS

Survival probability of v_e :

 \mathbf{B} – LENS-Sterile

Design options for LENS

Active – sterile mass splittings and mixing parameters compatible with LSND and the null SBL data (from Sorel et al., Phys. Rev.D70:073004,2004) LENS

Christian Grieb, Virginia Tech, June 2007

3.3

5.1

34

15

Statistical precision of oscillation parameter measurement in LENS

Active – Sterile Oscillation Sensitivity with LENS

LENS

MINILENS

Final Test detector for LENS

- NSF funded
 - InLS : 128 L
 - Liquid Scintillator Buffer
 - 3" pmt's : ~150
- Test detector technology
 →Medium Scale InLS production
 →Design and construction
- Test background suppression of In radiations by 10⁻¹¹

Expect ~ 5 kHz In β -decay singles rate; adequate to test trigger design, DAQ, and background suppression schemes

• Demonstrate In solar *signal* detection in the presence of high background (via "proxy")

Direct blue print for full scale LENS

Proxy pp-v events in MINILENS

Proxy pp nu events in MINILENS from cosmogenic ¹¹⁵In(p,n)¹¹⁵Sn isomers

- Pretagged via μ , p tracks
- Post tagged via n and 230 μ s delay
- → Gold plated 100 keV events (proxy pp), Tagged by same cascade as In-v events
- → Demonstrate In-v Signal detection even in MINILENS

Cosmogenic production of In (p,n) Isomers

Taggable via μ, p, n (via ln n,gamma) and delayed coincidence Rate @ 1400 mwe VT-NRL Kimballton lab I= 3y/t ln; Rate @ surface laboratory: 900/ t ln/y

MINILENS concept

MINILENS Electronics

Options for Lattice Structure

Single Foil

LENS

Double Foil

Christian Grieb, Virginia Tech, June 2007

Summary

Major breakthroughs in LENS:

- Indium liquid scintillator synthesis
- New detector technology (Scintillation Lattice Chamber)
- GEANT4 Simulation of Indium β^{-} background
- → Basic feasibility of In-LENS-Sol secure (10t In, 125t In-LS)

Science in LENS:

Measure solar v-spectrum below 2MeV

- \rightarrow v Luminosity of the sun
- \rightarrow Gamow shift of pp-v spectrum probes the T profile
- \rightarrow Search for active sterile neutrinos
- \rightarrow Test of Astrophysics & v physics in one experiment

Now:

Build MINI-LENS - 130 liter InLS detector Test all the concepts and the technology developed so far & demonstrate Indium solar signal detection

LENS-Sol / LENS-Cal Collaboration (Russia-US: 2004-)

Russia:	INR (Moscow): I. Barabanov, L. Bezrukov, V. Gurentsov,					
		V. Kornouknov, E. Yanovich;				
	IPC (Moscow):	N. Danilov, G. Kostikova, Y. Krylov				
	INR (Troitsk)	I: J. Abdurashitov, V. Gavrin. et al.				
		II: V. Betukhov, A. Kopylov, I. Oriachov,				
		E.Solomontin				
U. S.:	BNL:	R. L. Hahn, M. Yeh;				
	U. N. Carolina:	A. Champagne, H. Back;				
	ORNL:	J. Blackmon, C. Rascoe, A. Galindo-Uribarri,				
		Q. Zeng;				
	Princeton U. :	J. Benziger;				
	SCSU:	Z. Chang;				
	Virginia Tech:	C. Grieb, J. Link, M. Pitt, R.S. Raghavan,				
		D. Rountree, R.B. Vogelaar;				

Additional Slides

Signal Reconstruction

- Event localization relies on PMT hit pattern (NOT on signal timing)
- Algorithm finds best solution for event pattern to match PMT signal pattern
- System is overdetermined, hardly affected by unchannelled light
- Timing information + position
 ⇒ shower structure

LENS Design Figures of Merit

Cell Size [mm]	Cube size [M]	pe/ MeV	Det. Eff [%]	Nu /t In/y	Bgd /t In/y	S/N	M (In) [tons]	M (InLS) tons	PMTs
75	5	900	64	40	13	3	10	125	13300 [*] (3")
125	~6	950	40	26	9	2.9	15.3	190	6250 [*] (5")

*Pmt's on three sides only

LENS is a feasible detector,

125t of liquid scintillator and ~13300 photomultiplier channels

for ~2000 pp-v events in 5 years with full spectroscopic information plus ⁷Be, pep and CNO

Test of Solar Models

Solar models predict relative intensities in the pp-chain

Reaction rates depend on temperature profile and abundances

Cross check with measured fluxes (using neutrino oscillation physics)

Neutrino Inferred Solar Luminosity

					•••••		
Nuclear fusion	Reaction	Number	$_{(\rm MeV)}^{\rm Q}$	$< q_{\nu e} >$ (MeV)	S_0 (keV barns)	(dS/dE) (barns)	Lifetime (yr)
reactions in the	$^{1}\mathrm{H}(p,e^{+} u_{e})^{2}\mathrm{H}$	1	1.442	0.265	$4.07(1\pm0.051)\times10^{-22}$	4.52×10^{-24}	10 ¹⁰
	$^{1}\mathrm{H}(p~e^{-}, u_{e})\mathrm{H}$	2	1.442	1.442	[see Eq. (5), Paper I]		1012
501a1 CUIE	$^{2}\mathrm{H}(p,\gamma)^{3}\mathrm{He}$	3	5.494		$2.5 imes 10^{-4}$	$7.9 imes 10^{-6}$	10^{-8}
	${}^3\mathrm{He}(p,e^+\nu_e){}^4\mathrm{He}$	4	19.795	9.625	$8 imes 10^{-20}$		1012
pp-chain	$^{3}\mathrm{He}(^{3}\mathrm{He},2p)^{4}\mathrm{He}$	5	12.860		$5.15(1\pm0.17) imes10^3$	-0.9	105
+ CNO cycle	${}^{3}\mathrm{He}({}^{4}\mathrm{He},\gamma){}^{7}\mathrm{Be}$	6	1.586		$0.54(1 \pm 0.06)$	$-3.1 imes 10^{-4}$	10 ⁶
A. Bethe Phys.Rev. 55 , 434 (1939)	$^7\mathrm{Be}(e^-,\nu_e)^7\mathrm{Li}$	7	$0.862 \\ 0.384$	0.862 0.384	[see Eq. (9), Paper I]		10 ⁻¹
	$^7\mathrm{Li}(p,lpha)^4\mathrm{He}$	8	17.347		$52(1\pm0.5)$	0	10 ⁻⁵
No solar model	$^7\mathrm{Be}(p,\gamma)^8\mathrm{B}$	9	0.137		$0.0243(1 \pm 0.22)$	$-3 imes 10^{-5}$	10 ²
needed	${}^8\mathrm{B}(e^+\nu_e){}^8\mathrm{Be}^*$ ${}^8\mathrm{Be}^*(\alpha){}^4\mathrm{He}$	10	17.980	6.710			10-8

Nuclear reactions in the pp-chain:

J. N. Bahcall and R. Ulrich, Rev. Mod. Phys. 60, No. 2, p. 297 (1988)

H.A. Bethe F