

Double Beta Decay and Neutrinos, Osaka 2007

The KATRIN experiment a direct v mass measurement with sub-eV sensitivity

V.M. Hannen for the KATRIN collaboration, Institut für Kernphysik, Westfälische Wilhelms-Universität Münster

- Introduction
- Experimental setup
- Background suppression
- Calibration and monitoring
- Status and outlook

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Introduction: neutrino mass in particle and astrophysics

Katan Neutrino Edge

oscillation experiments measure $\Delta m^2 = (m_i^2 - m_i^2)$

Westfälische

Münster

Wilhelms-Universität

Introduction: methods and upper limits

Introduction: kinematic determination of m(v_c)

Simplified form of the β spectrum:

$$\frac{\mathrm{dN}}{\mathrm{dE}_{\beta}} \propto (\mathrm{E}_{0} - \mathrm{E}) \sqrt{(\mathrm{E}_{0} - \mathrm{E})^{2} - \mathrm{m}^{2}(\mathrm{v}_{e}) \mathrm{c}^{4}}$$

Tritium: ideal β emitter for this purpose

- $E_0 = 18.6 \text{ keV}$
- T_{1/2} = 12.3 a

Requirements:

- high energy resolution
- large solid angle ($\Delta \Omega \sim 2\pi$)
- low background rate

→ use MAC-E filter

Introduction: MAC-E filter concept

Magnetic Adiabatic Collimation with Electrostatic Filter

A. Picard et al., Nucl. Instr. Meth. B 63 (1992)

- electrons gyrate around magnetic field lines
- only electrons with E_{II} > eU₀ can pass the MAC-E filter
 - \rightarrow Energy resolution depends on ΔU_0 and on E_{\perp}
- B drops by a factor 20000 from solenoid to analyzing plane,

 $\mu = E_{\perp} / B = const. \longrightarrow E_{\perp} \rightarrow E_{\parallel}$

• $\Delta E = E * B_{min} / B_{max} \approx 1 \text{ eV}$

 MAC-E filter acts as a high pass filter with a sharp transition function

The KATRIN experiment: collaboration

Aim: improve the current upper limit by at least one order of magnitude

1000 days of data \rightarrow 0.2 eV at 90% CL

(KATRIN design report 2004, FZKA 7090)

The KATRIN experiment: experiment overview

Tritium laboratory Karlsruhe (TLK)

KATRIN spectrometer hall

The KATRIN experiment: windowless gaseous tritium source

column density $\rho d [10^{17} \text{ molecules / cm}^2]$

WGTS design:

- tube in long superconducting solenoids
 Ø 9cm, length: 10m, T = 30 K
- near optimal working point @ $\rho d = 5 \cdot 10^{17}/cm^2$
- temperature stability of ± 0.1% achieved by 2 phase Neon cooling

Kantanike Aritikum Neutrino Erice

The KATRIN experiment: differential and cryo pumping sections

DPS: differential pumping of T₂ using TMPs (2000 l/s)

- 6.2 m long
- 5 solenoids
- with B = 5.6 T

 \rightarrow T₂ reduction by \ge 10⁷

CPS: cryosorption of tritium on Ar/Kr frost at 3 – 4.5 K

T₂ cryosorption

Ar/Kr frost stainless steel

- maximum allowed tritium flow into the pre-spectrometer: 10⁻¹⁴ mbar l/s
- last tritium retention stage before the spectrometers
- tritium suppression factor ≥ 10⁷

The KATRIN experiment: pre-spectrometer

- **Pre-filter** with a fixed potential: E = 18.3 keV $\Delta E \approx 100 \text{ eV}$
- **Test-bed** for the main spectrometer technology

Vacuum tests:

- turbo-molecular pumps
- NEG pumps (getter)
- outgassing rate:
 < 10⁻¹² mbar l/cm² s
- p < 10⁻¹¹ mbar
- heating/cooling

Electro-magnetic tests:

- test of el.-mag. design
- high voltage on outer vessel
- inner wire electrode
- electrical insulators
- s.c. magnets

The KATRIN experiment: main-spectrometer

The KATRIN experiment: main-spectrometer transport

The KATRIN experiment: installation in experimental hall

ZZAU

29.11.2006

V.M. Hannen, Osaka 2007 13

The KATRIN experiment: detector

Task

 detection of electrons passing the main spectrometer

Requirements

- high efficiency (> 90%)
- low background (< 1 mHz) (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- segmented wafer (145 pixels)
- post acceleration (30kV) (to lower background in signal region)

Status

- 2007: design report (FZK, Seattle, MIT)
- 2010: commissioning

 T_{2} -

source

KATRIN wire electrode: screening of background electrons

- Cosmics and radioactive contamination can mimic e⁻ in endpoint energy region
- 650m² surface of main spectrometer

 \rightarrow ca. 10⁵ μ / s + contamination

- Reduction due to B-field: factor 10⁵⁻¹⁰⁶
- Real signal rate in the mHz region
- Additional reduction necessary

U∩

- Screening of background electrons with a wire grid on a negative potential
- Proof of principle at Mainz MAC-E filter
 - → at 200 V shielding potential the background rate was reduced by a factor 10 with a single layer electrode

KATRIN wire electrode: removal of trapped particles

- combined electrostatic and magnetic fields can trap charged particles inside the main spectrometer
- ionization of residual gas molecules
 → creation of secondary electrons
 increasing background

trapped electron (orange), electric dipole field causes radial drift motion out of sensitive spectrometer region (green)

'dipole mode' of wire electrode:

- trapped particles are driven towards vessel wall by E x B drift
- removed from sensitive volume by absorption or neutralization

16

KATRIN wire electrode: technical design and quality assurance

Calibration and monitoring: monitor spectrometer concept

Westfälische

Münster

Wilhelms-Universität

error budget: $\Delta m_v^2 \le 0.007 \text{ eV}^2 \implies \sigma < 60 \text{ meV} \implies 3 \text{ ppm long term stability}$

Calibration and monitoring: precision high voltage divider

- Precision HV divider for monitoring of KATRIN retardation voltage
 100 Vishay bulk metal foil resistors with a total resistance of
- divider ratios 1:3944 / 1:1972

R = 184 M Ω , TCR < 2 ppm / K

• Temperature regulated with N₂ flow to T = 25 °C with Δ T < 0.1 °C

• KATRIN stability requirement $\sigma < 60 \text{ meV}$

 \rightarrow long term stability of < 1 ppm/month required

scale factors		1972,48016(61):1		3944,95973(138) : 1	
rel. standard deviation	ary	0,31 ppm	1	0,35 ppn	า
long term stability (Sept. 2005)	mm	3,0(1,0)	ppm/month	n 1,6(7)	ppm/month
long term stability (Okt. 2006)	elir	0,17(33)	ppm/month	n 0,25(59)	ppm/month
long term stability 2005 - 2006	br	0,604(53)	ppm/month	n 0,564(52)ppm/month
		_			

T. Thümmler with support from Dr. K. Schon und R. Marx, PTB Braunschweig.

V.M. Hannen,

000000

Calibration and monitoring: condensed Krypton source

- Natural standard via 17.8 keV conversion electrons from ^{83m}Kr decay (additional L₃-32 line at 30.5 keV)
- Production via ${}^{81}Br(\alpha, 2n){}^{83}Rb$ at the Uni-Bonn cyclotron
- stability with pre-plated substrate: $\sigma = 56 \text{ meV}$

graphite substrate pre-plated with stable Kr

KATRIN experiment: status and outlook

- KATRIN main components are either set up (e.g. pre-spectrometer, main-spectrometer vessel) or under construction (e.g. WGTS, DPS); test experiments are running (TILO, TRAP, calibration sources)
- Main spectrometer: installation of full vacuum system and test of heating cooling system summer 2007; Production of inner wire electrode starts June 2007, installation of wire electrode beginning of 2008
- CkrS: automation and final tests summer 2007; HV divider: first divider successfully built and tested, second (redundant) divider under construction
- Begin of KATRIN measurements: 2010, expected measurement time 5-6 years for 3 years worth of data
- Sensitivity: upper limit of 0.2 eV with 90% C.L. ; a neutrino mass of 0.35 eV could be determined with 5σ significance