

June 12, 2007@DBD07, Osaka

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrinos and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer

Enrichment of ⁴⁸Ca

~Separation with a crown ether~

18-crown-6-ether

Pedersen @ 1962 Cram&Lehn @ 1987 Molecular Recognition Technology Nobel Prize

広島大学

大阪大學

Ryuta Hazama Hiroshima University

⁴⁸Ca enrichment

- Natural abundance
 - **→** 0.187%
 - Enriched isotope
 - \rightarrow expensive
 - (elemag. separator;
 - Calutrons)~200K\$/g ~10g × 2 (in the
 - ~10g × 2 (in the world)
 - →no gaseous compounds
 - at room temp.
 - Gas centrifuge

I		17	140					T		VIIIo		V	Ш	
н	1	Π	Ш	I	v	v	VI	V	u	2 He				
·3 Li	E	4 3e	5 B	с	6	7 N	8	F	9	10 Ne				•
) Na	1	12 Ag	13 Al	Si	14	15 P	16 S		7	18 Ar				
K	9	20 Ca	21 Sc		22 Ti	23 V	24 Cr	2 M	15 In	'	2	6	27 Co	28 Ni
2' · C	9	30 Zn	31 Ga	G	32	33 As	34 Se	3 Br	5	36 Kr				
3 Rł	5	38 Sr	39 Y	Z	10	41 Nb	42 Mo	4 To	3		4 Ru	4 R	45 th	46 Pd
4	7	48 Cd	49 In	Sp	50	51 Sb	52 Te	1	3	54 Xe				
5: Cs	5 E	56 Ba	57 *La		72 Hf	73 Ta	74 W	7	5		7	6	77 lr	78 Pt
7 A	9	80 Hg	81 . TL	Pb	12	83 Bi	84 Po	At	5	86 Rn				
8' Fr	7	88 La	89 **Ac	10 Ku	14	105 Ns			T		T	T		
*	58 Ce	59 Pr	60 Nd	61 Pau	62 Sm	63 Eu	64 Gd	65 Td	66 Dy	67 Ho	68 Er	69 Tu	70 Yb	71 Lu
••	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Bk	100 Fm	101 Md	102 No	103 Lr

Elements separated into isotopes with gas centrifuges -

A.I.Karchevski

 $\beta\beta$ isotopes; ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd etc.

Technologies for isotope production for Ca

Separation technology	Field of use	Production per year	Cost
Electromagnetic (mass-spectroscopy effect)	universal	tens of grams	high
Chemical & phys. processes (rectification, chem. exchange etc)	light elements	tons	low
Gas diffusion	elements forming gas compounds	thousands of tons	middle
Gas centrifuge	elements forming gas compounds	thousands of tons	low
Laser (optical) separation	elements having isotope shift of spectrum lines	kilograms	middle
Plasma ion-cyclotron effect (under developing – the USA, Russia)	universal	hundreds of kilograms	middle

Find a cost-effective & efficient way of enrichment!!!

Unique Property of Crown Ether

Complexing of cations(anions) by neutral molecules is an uncommon phenomenon.

Stability is $\sim 10^4 \times \text{no-ring(crown)}$

•Held by electrostatic attraction between negatively charged O⁻ of the C-O dipoles & cation (Ca²⁺)

•How well the cation fits into the crown ring

•Liquid(aq-salt)-liquid(org-crown)

extraction in isotopic equilibrium

DC18C6 Total # of atoms in the ring # of oxygen atoms in the ring

Ca Isotope effects ~ Separation Principle

Ca	⁴⁰ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁶ Ca	⁴⁸ Ca
isotope						
abunda nce(%)	96.9	0.65	0.135	2.09	0.004	0.187

Major background molecular ions formed from the Ar Plasma, nebulized water and dissolved/contained air.

1. TIMS(TRITON Thermo Electron) No-Ar Only four TRITONs in Japan

2. Reaction(collision)-cell ICPMS

Perkin Elmer ELAN-DRCII@Kochi Univ.

Q inside reaction-cell allows use of ammonia

 \rightarrow can avoid interference of Ar by reaction-gas Simple collision-cell must use simple gas(H₂, He) to limit

Ar⁺ Ca⁺ H_{3}^{40} Ar⁺ H_{3}^{40} H_{3}^{40} $H_{3}^{$

Ca(6.11eV)<NH3(10.16eV)<Ar(15.76eV)

⁴⁰Ca,⁴⁸Ca are doubly magic \rightarrow A parabolic behavior

Comparison

Table 1: Summary of previously achieved(measured:known) calcium LLC(liquid-liquid chromatography), DC18C6((polyether) enrichment. dicvclohexvl 18-crown-6), HDEHP(di(2-ethylhexyl) orthophosphoric acid). SLC(solid-liquid-chromatography), LIS(laser isotope separation), MCIRI(Magnetic Cyclotron Ion Resonance of Isotopes)

1 0000	separation factor	process	ref.(manufacturer)
1.0020	$1.012\pm0.005~(\alpha^{48})$	LLC(DC18C6)	Osaka RI-center and WERC
1.0028	$1.014 \pm 0.006 \ (\alpha_{43}^{42})$	LLC(DC18C6)	Osaka RI-center and WERC
1.0010	$1.0080 \pm 0.0016^{\dagger} (\alpha_{40}^{48})$	LLC(DC18C6)	
1.0007	$1.0029 \pm 0.0006 \ (\alpha_{44}^{48})$	LLC(HDEHP)	
	1.0013 ± 0.0003	LLC(amalgam(Hg))	
	$1.000043 \sim 1.000034$	SLC(ion-exchange)	Nresinnovex
	$1.00026 \ (\alpha_{40}^{47})$	SLC(ion-exchange)	[9]resin(Dowex)
	$1.00021 \ (\alpha_{40}^{44})$	SLC(ion-exchange)	[6]resin(Dowex)
	$1.00087 \pm 0.00008 \ (\alpha_{40}^{48})$	SLC(ion-exchange)	$[7]$ NH ₄ α -hydroxyisobutyrate&(Dowex)
1.0010	$1.0041 \pm 0.0004 \ (\alpha_{40}^{44})$	SLC(ion-exchange)	[8] iminodiacetate&resin(ANKB-50)
	$1.00013 \sim 1.00087^{\sharp}$	SLC(ion-exchange)	[9](TIT)resin(PK-1),Counter-Current
	$1.00016 \sim 1.00037 (\alpha_{40}^{48})$	SLC(ion-exchange)	[10](Sophia) resin(Asahi LS-6)
	$1.00018 (\alpha_{40}^{48})$	SLC(ion-exchange)	[11]resin(AG50WX4)
	$1.00049 \sim 1.00013 \ (\alpha_{40}^{44})$	SLC(ion-exchange)18C6	[12]resin(AG50WX4)
1.0010	$1.0039 \pm 0.0002 \ (\alpha_{40}^{44})$	$SLC(cyptand 2_B.2.2)$	[13] Need to verify by
1.0006	$1.0025 \pm 0.0003 \ (\alpha_{40}^{44})$	SLC(18C6)	
1.0000	$1.00011 \pm 0.00003 \ (\alpha_{40}^{44})$	SLC(iminodiacetate)	^[13] Drecise TIMS &
1 0009	$1.0035 \pm 0.0003 \ (\alpha_{40}^{44})$	SLC(18C6+dimethyl sulfoxide)	
1 0006 1 0012	$1.0045 \sim 1.0104 (\alpha_{40}^{48})$ §	$SLC(cryptand 2_B.2.2)$	^[15] More iterate LLF
1.0000~1.0013	-	LIS(LLNL)	a few $/mg/1M/kg$ for ⁴³ Ca [16]
	20%	MCIRI	$5 \text{kg/day} \rightarrow 10 \text{g/day} (0.7 \text{K})^* [17]$
	$65.3 {\sim} 95.7\%$	carbonate or oxide	TRACE Science Int. [18]
	$6\%\%~(\alpha_{40}^{44})$	chemical diffusion [‡]	[19]

[†] $0.185\% \rightarrow 10\%$ for 1kg/yr by Counter current distribution method.

~800 iteration $\pm 0.185\% \rightarrow 10\%$ for 1kg/yr by Counter current distribution method. $\pm 0.185\% \rightarrow 0.226\%$ after 5 weeks, yielding 144mg of the enriched calcium(1.4g/yr).

§ In a preliminary experiment, they could isolate 30mg of calcium in which

 $0.187 \rightarrow 2.0\%$ ⁴⁸Ca was enriched by 3.3 % at 0°C from 210mg of natural abundant calcium.

* This corresponds to 3.7kg/yr(¥0.7M/kg). Current cost of product at "electromagnetic" (aka calutrons at ORNL) separation $\sim 200 \text{K}/\text{g}(\text{2}200 \text{M/kg})$.

Prospect for Mass production

LLE by Microchannel/reactor

- Fast & Highest conversion synthesis
- Aqueous-organic multiphase flow

Column chromatography using crown ether resins

- Multi-stage process
- Slow & low conversion

Ca solution: Analyte(mobile phase)

Fig. 1 Photographs showing glass microchip and liquid–liquid interface **No-stirring, Fast!!** formed inside the microchannel.

Fig. 3 Reaction conditions and results obtained with phase transfer diazocoupling reaction under microscale and macroscale conditions.

World's 1st 30 ton/yr production Microchip Chemical Plant 👷

Summary

- The preliminary largest separation factor of Ca by LLE using DC18C6 is suggested.This still needs to be checked by TIMS, temp.& concentration dependence.
- We evaluated each contribution ratio of the field shift/hyperfine splitting shift effect to the mass effect of Ca for the 1st time.

The contributon of the field shift effect is small, especially for ⁴⁰Ca-⁴⁸Ca, compared with Cr.

 These indications are promissing towards the mass production of enriched ⁴⁸Ca by the chemical separation method with the help of resins and/or microchannel chip.

Many Thanks to Prof. Fujii, Y. Sakuma, M. Tanimizu, M. Tokeshi & Y. Shibahara