Implications of absolute neutrino mass on cosmological parameter estimation

Kazuhide Ichikawa

(Institute for Cosmic Ray Research)

KI, M. Fukugita & M. Kawasaki, PRD71 043001 (2005) M. Fukugita, KI, M. Kawasaki & O. Lahav, PRD74 027302 (2006) KI & M. Fukugita , in preparation

International Workshop on Double Beta Decay and Neutrinos, Osaka, June 2007

There are many works to derive constraint on neutrino masses from cosmological data.

There are many works on cosmological constraint on neutrino masses.

http://lambda.gsfc.nasa.gov/

We need cosmological parameter estimation fixing neutrino mass to some finite value.

WMAP Cosmological Parameters	
Model: lcdm	
Data: wmap	
$10^2\Omega_b h^2$	2.229 ± 0.073
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.5\pm1.3)\times10^{-10}$
h	$0.732^{+0.031}_{-0.032}$
H_0	$73.2^{+3.1}_{-3.2}~{\rm km/s/Mpc}$
$\log(10^{10}A_s)$	3.156 ± 0.056
$n_s(0.002)$	0.958 ± 0.016
$\Omega_b h^2$	0.02229 ± 0.00073
$\Omega_c h^2$	$0.1054\substack{+0.0078\\-0.0077}$
Ω_{Λ}	0.759 ± 0.034
Ω_m	0.241 ± 0.034
$\Omega_m h^2$	$0.1277^{+0.0080}_{-0.0079}$
σ_8	$0.761\substack{+0.049\\-0.048}$
τ	0.089 ± 0.030
θ_A	0.5952 ± 0.0021 °
Z_T	$11.0\substack{+2.6 \\ -2.5}$

The Hubble constant decreases significantly by the finite neutrino mass.

 $m_{\nu} \sim 0.5 \text{ eV}$

 $\left(\begin{array}{c} H_0 = 73.2 \pm 3.1 \\ \text{for massless case.} \end{array}\right)$

<u>http://lambda.gsfc.nasa.gov/</u>

We assume flat Lambda CDM model (6 parameters) + neutrino mass

baryon density CDM density Hubble constant epoch of reionization amplitude of fluctuation a slope for the scalar perturbation

Hubble constant (expansion rate at present): H_0 $H_0 = 100 h \text{km/s/Mpc}$ neutrino mass (for one generation): m_{ν} We assume three generations and the masses are degenerate.

neutrino mass density (relative to the critical density)

$$\omega_{\nu} = \frac{3 \, m_{\nu}}{94 \, \mathrm{eV}}$$

I eV corresponds to $~~\omega_{
u} \sim 0.03$ (cf. $\omega_{\rm CDM} \sim 0.105$)

Assume h is measured with a total uncertainty of 5%

h

Conclusion

- If neutrino mass is detected to be $m_{\nu} \gtrsim 0.3$ eV, it is consistent with people claiming small Hubble constant.
- If not detected, upper bound of ≤ 0.3 eV is very useful because uncertainty of m_{ν} is one of the largest systematic errors for estimating cosmological parameters from CMB (most notably for Hubble constant).
- These correlation between m_{ν} and H_0 holds if we combine CMB data with Supernova and galaxy clustering data. It is also expected to hold in the Planck era.