Present status of DCBA experiment

N. Ishihara (KEK)

Contents

- Motivation for Neutrinoless DBD
- Introduction to DCBA
- Recent results from DCBA-T2
- DCBA-T3 as the final R&D
- Future plan of Magnetic Tracking Detector
- Summary

Neutrinoless DBD, Seesaw mechanism and Leptogenesis

Seesaw mechanism (1979, Yanagida, Gell-Mann et al.)

 $m_v \approx \frac{m_D^2}{M_N}$, m_D : mass of charged Dirac particle M_N : mass of heavy Majorana neutrino N_R

Majorana neutrino permits **lepton number violation process** \rightarrow **Neutrinoless D**ouble Beta Decay.

→ Leptogenesis (1986, Fukugita, Yanagada) → Baryogenesis

BR $(N_R \to \ell_L + \overline{\phi}) \neq$ BR $(N_R \to \overline{\ell_L} + \phi)$, ϕ : Higgs particle

Prediction from Leptogenesis: 0.001 eV < <m_v> <0.1 eV [W. Bachmuller, R. D. Peccei and T. Yanagida, Annu. Rev. Nucl. Part. Sci. 2005, 55: 311-355]

N. Ishihara

DCBA (Drift Chamber Beta-ray Analyzer)

R&D for Future MTD (Magnetic Tracking Detector)

- N. Ishihara [Spokesperson], T. Haruyama, T. Inagaki, G. Iwai, Y. Kato,
- Y. Makida, T. Ohama, S. Takeda, Y. Yamada (KEK)
- T. Ishikawa, S. Kitamura, T. Sumiyoshi (Tokyo Metro. Univ.)
- Y. Teramoto (Osaka City University)
- Y. Sakamoto (Tohoku Gakuin University)
- I. Nakano (Okayama University)
- Y. Nagasaka (Hiroshima Institute of Technology)
- N. Tamura (Niigata University)
- K. Tanaka (Saitama Science Institute)
- R. Itoh (Zentek Technology Japan, Inc.)

19 members / 9 institutes

Principle of DCBA (Drift Chamber Beta-ray Analyzer)

 $p \cos \lambda = 0.3 rB,$ $T = (p^2 + m_e^2)^{1/2} - m_e$

p (MeV/c): momentum, r (cm): radius, λ : pitch angle, B (kG): magnetic field, m_e (MeV/c²): electron mass

N. Ishihara

DCBA-T2

• Drift chamber Source	Multi-track capability Nd_2O_3 (40 mg/cm ²)
Q 1	$(^{150}Nd = 0.008 mol)$
Sensitive vol.	$(9(X) \times 26(Y) \times 26(Z)) \times 2 \text{ cm}^3$
Signal readout	Flash ADC
X-position	Drift velocity × Drift time
	$(\sigma_{\rm X} \sim 1 \text{ mm})$
Y-position	Anode wire position (6 mm pitch)
	$(\sigma_{\rm Y} \sim 0.2 \text{ mm})$
Z-position	Pickup wire position (6 mm pitch)
	$(\sigma_Z \sim 0.2 \text{ mm})$
• Magnet	Solenoid coil (normal cond.) +
	Flux return yoke
Magnetic field	0.8 kG (Max.)
Uniform Vol.	40 dia. × 70 cm ³ ($\delta B/B_0 < 1\%$)

N. Ishihara

3-D raw data plot of cosmic ray

Position residual with cosmic straight tracks

Energy measurement of an I. C. electron from ²⁰⁷Bi

Energy Resolution of DCBA-T2

DBD07, Osaka, June 12, 2007

Estimation of energy resolution at Q-value $\text{FWHM}(E_{\beta}) \approx 0.15 \text{ MeV} \approx 2.35 \sigma(E_{\beta})$ $\sigma(E_{\beta 1}) = \sigma(E_{\beta 2}) = \sigma(E_{\beta}) \approx 0.064 \,\mathrm{MeV}$ $E_{Sum} = E_{\beta 1} + E_{\beta 2} \left(= Q \text{ for } 0\nu\beta\beta\right)$ $\sigma^2(E_{Sum}) = \sigma^2(E_{\beta 1}) + \sigma^2(E_{\beta 2}) = 2\sigma^2(E_{\beta}), \ \sigma(E_{Sum}) = \sqrt{2\sigma(E_{\beta})}$ FWHM $(E_{Sum}) \approx 2.35\sigma(E_{Sum}) = 2.35\sqrt{2}\sigma(E_{\beta}) \approx \sqrt{2}$ FWHM (E_{β}) $FWHM(E_{Sum}) \approx 0.21 MeV$ DCBA-T2 $\frac{\text{FWHM}(E_{Sum})}{Q} \approx \frac{0.21}{3.37} \approx 0.062 \Longrightarrow 6.2\%$ (equal to plastic scinti.) $\text{FWHM}(E_{\beta}) \approx 0.1 \text{ MeV} \rightarrow \text{FWHM}(E_{Sum}) \approx 0.14 \text{ MeV}$ $\frac{\text{FWHM}(E_{Sum})}{Q} \approx \frac{\overset{(0.08)}{0.14(0.11)}}{3.37} \approx \overset{(0.042)}{\approx 0.042} \approx 4.2\% \overset{(0.11)}{3.3}$

N. Ishihara

N. Ishihara

DBD07, Osaka, June 12, 2007

DCBA-T3

• Drift chamber	Multi-track capability
Source	$Nd_2O_3 (40 \text{ mg/cm}^2 \times 13,760 \text{ cm}2 = 550 \text{ g})$ (¹⁵⁰ Nd = 0.18 mol)
Sensitive vol.	$4(X) \times 44(Y) \times 44(Z)$ cm ³ /chamber: 8 chamber $4(X) \times 20(Y) \times 44(Z)$ cm ³ /chamber: 4 chamber
Anode wire pitch	3 mm
Pickup wire pitch	3 mm
Signal readout	Flash ADC
X-position	Drift velocity × Drift time ($\sigma_X \approx 0.5 \text{ mm}$)
Y-position	Anode wire position ($\sigma_{\rm Y} \approx 0.2 \text{ mm}$)
Z-position	Pickup wire position ($\sigma_Z \approx 0.2 \text{ mm}$)
• Magnet	Sum ano an du stin a Calan sid + Elux naturn value
• Magnet	Superconducting Solehold + Flux return yoke
Magnetic field	2.0 kG (Max.)
Uniform Vol.	80 dia. x 80 cm ³ ($\delta B/B_0 < 1\%$)

• Veto-counters Scintillation counters

Geant4 studies on energy resolution

E(single) = 976 keV, Chamber gas: He + CO₂(15%), 1 atm

Geant4 studies on energy resolution E(single) = 1500 keV, Wire pitch = 3 mm

Future plan MTD (tentative)

N. Ishihara

Half-life and Effective Mass Sensitivities of MTD for ¹⁵⁰Nd, ¹⁰⁰Mo and ⁸²Se (Tentative)

	Natural Nd	¹⁵⁰ Nd	¹⁰⁰ Mo	⁸² Se
	(5.6% ¹⁵⁰ Nd)	(80% enr.)	(90% enr.)	(90% enr.)
MTD Amount (mol) (600 kg : 50 modules o	190 of 15 mg/cm ²)	2700	5400	6600
$T^{1/2}_{0v}$ sens. (yr)	9×10^{24}	1×10^{20}	$\begin{array}{ccc} 6 & 2 \times 10^2 \\ & 0.07 \end{array}$	3×10^{26}
$< m_v > sens. (eV)$	0.06	0.02		0.04

Nucl. Matrix Element: A. Staudt et al. Europhys. Lett. 13 (1) (1990) 31

Optimistic Schedule of DCBA/MTD (depending on financial support)

Japanese Fiscal Year (April – March)									
2007 H19	2008 H20	2009 H21	2010 H22	2011 H23	2012 Н24	2013 H25	2014 Н26	2015 Н27	2016 Н28
R&D projectDCBA1st Mfor MTDMaDCBA-T31st MR&D of SC-magnetAsset									
		1 st MTD module Magnet		1 st MTD module					
		1 st MTD module			Operation				
		Assembly		operation					
R&D of assemb	Cchamber ly	Installatio & operation	on to UGL on						
Preparation of Underground Laboratory		of DCBA	-T3						
		Preparation of mass production		Mass production (20-50 modules) & Operation down to 30 meV					

Summary

♦ Leptogenesis predicts the effective neutrino mass being between
0.001 eV and 0.1 eV.

♦ DCBA (Drift Chamber Beta-ray Analyzer) is an R&D project for constructing Future MTD (Magnetic Tracking Detector). The test apparatus of DCBA (DCBA-T2) have shown that the energy resolution is better than 150 keV (FWHM) at 970 keV, and background events are clearly identified.

◆ DCBA-T3 is scheduled to be constructed in 2007 and operated in 2008. Target energy resolution is less than 100 keV at 976 keV.

• New international collaboration of MTD will be able to investigate the effective neutrino mass down to around 0.05 eV.