

RENO: Reactor Neutrino Experiment at Yonggwang

Hyunsoo Kim

Seoul National University

DBD07 Int'l Workshop

What is RENO?

RENO = $\underline{\mathbf{R}}$ eactor $\underline{\mathbf{E}}$ xperiment $\underline{\mathbf{N}}$ eutrino $\underline{\mathbf{O}}$ scillation

Project Summary

- Feasibility study began in early 2004.
- Announced the intention for the project at FLENE05 workshop in Brazil in 2005.02.
- Submitted the proposal to MOST (Ministry of Science and Technology) in 2005.04 and it was approved with \$10M (US).
- The budget was allocated in 2005.12
- The project began in 2006.03.
- Data -taking is expected to start in early 2010
- Technical Design Report will be ready in July 2007
- International collaborators are being invited

Schedule

A otiv <i>i</i> iti o o			20	006	3					2	200)7							20	300	3								2	200)9								
Activities	3		6			9	12	2	3		6		9)	12		3		6			9		12	2		3			6		Ś	9		1:	2			
Detector Design																																							
& Specification											i																												
Geological Survey																																					Τ		
& Tunnel Design						!										L																							
Detector																																					Τ		
Construction																		Τ					Τ	Τ	Τ	Τ							Τ	Τ	Τ	T			
Excavation & Underground Facility																									Ι											T	T		
Construction											i																												
Detector											!																												
Commissioning																																						Τ	

RENO Collaboration

12 Institutions/43 Collaborators

- Chonnam National University
- Dongshin University
- Gyeongsang National University
- Institute of Nuclear Physics RAS (Russia)
- Institute of Physical Chemistry and Electrochemistry RAS (Russia)
- Kyungpook National University
- Pohang Accelerator Laboratory
- Pusan National University
- Sejong University
- Seoul City University
- Seoul National University
- Sungkyunkwan University

Yonggwang Nuclear Power Plant

Yonggwang Nuclear Power Plant

Yonggwang Nuclear Power Plant

Six ~1000 GW_e class PWRs
Total average thermal output of 16.4 GW (max 17.3 GW)

- •Started operation in 1986~2002.
- •Operational factor 2,90

2007.06.10-13

Reactor Operation History

Operation factor of Yonggwang nuclear reactors

operational factor = $\frac{\text{generated GWh in a year}}{365 \times 24 \times 6W \text{ of installed rated capacity}}$

Yonggwang Site

six reactors aligned in equal distance.

Yonggwang Site

Detector Location

Exp. hall@35	m AMSL	
	Vertical Depth (m/mwe)	
Near	35/93	
ForA	225/596	
Far B	165/437	

Expected Inverse Beta Decay Event Rates

•Each reactor has power output of $2.73 \, GW_{\text{th}}$ (=16.4/6)

```
•<sup>235</sup>U:<sup>238</sup>U:<sup>239</sup>Pu:<sup>241</sup>Pu=0.556:0.071:0.326:0.047
```


Survival Probability

Working Group Activities

Civil Construction & Underground Facility

- (geological survey, excavation, on-site lab utilities, etc.)
- → Negotiation with local government, residents, power company
- \rightarrow Construction of underground facility (tunnel design & excavation)

MC & Detector Design

(MC, performance study, detector drawing, detector optimization, etc.)

- \rightarrow Full detector simulator & analysis
- \rightarrow Detector design

Gd+Liquid Scintillator R&D

(purification, selection, production & purchase, etc.)

 \rightarrow R&D of recipe and study of characteristics

Prototype Detector

(PMT test, background study, construction scheme R&D, etc.)

 $\rightarrow\,$ Test of detection method using a prototype detector and a mockup version detector

On-Site Facility

- •2006.03-08 Townhall meetings with local residents, NGOs, and local government
- •2006.07 endorsement by local government
- •2006.11 endorsement by KHNP
- •2007.02 Contract awarded for geological survey and tunnel design
- •2007.03 Land usage agreement between KHNP and RENO
- •2007.05 Geological survey completed
- •2007.06 Tunnel design in progress
- •2007.10 Issue contract for tunnel construction

Borehole Rock Samples

DBD07 Int'l Workshop Osaka, Japan

MC Simulation

- Detector simulation based on GLG4sim.
- Used to determine detector geometry and size
- detector performance
- background studies

RENO Detector at a Glance

•Concentric cylindrical design

•15 ton target

•537 8" PMTs on the buffer vessel wall

•87x2 top/bottom

- •363 on cylinder wall
- solid angle coverage @centre = 12.6%

•Undetermined number of undetermined size PMTs in VETO

	Inner Diameter (cm)	Inner Height (cm)	vessel	Vessel Thickness (mm)	Filled with	Volume (m ³)	Mass (tons)
Target	280	320	Transparent Acrylic	12	Gd(0.1%) +LS	19.7	15.4
Gamma catcher	400	440	Transparent Acrylic	8	LS	35.2	27.5
Buffer	540	580	Stainless Steel	4	Mineral oil	76.9	59.2
Veto	740	780	Steel	15	water	201.8	201.8

Gamma Catcher Thickness

Gamma catcher thickness determined by the efficiency of Gd captured neutron identification

60cm: (93.0+/-0.6)%

Event Reconstruction

• Reconstructed vertex: σ ~8 cm at the centre of the detector

Osaka, Japan

1

Gamma Background from PMT

•Used almost all energy lines from ⁴⁰K, ²³²Th, and ²³⁸U decay chains

Muon Rates

•Modified Gaisser paramerisation for muon flux @sea level

- •MUSIC for muon propagation
- •Used site topology.

	Vertical Depth (m/mwe)	Φ_{μ} (m ⁻² s ⁻¹)	<e<sub>4> (GeV)</e<sub>
For A	225/596	2.9 ×10 ⁻¹	91.7
Far B	165/437	8.5×10 ⁻¹	65.2
Near	35/93	5.5×10 ⁰	34.3

•Other background studies are in progress

Liquid Scintillator R&D

Aromatic	Oil	Fluor	WLS	6d-compound
PC(Pseudocumene), PXE, LAB	Mineral oil, Dodecane, Tetrdecane, LAB	PPO, BPO	Bis-MSB, POPOP	0.1% Gd compounds with CBX or BDK

Requirements:

- Should satisfy physical, technical characteristics:
 - high transparency, good scintillation properties, ease of purification
- Safety consideration: high flash point, low toxicity.
- easy availability,
- Gd-LS must have long attenuation length, good light yield, and be stable for several years

•Gd+LS R&D with the Russian INR/IPCE group

- •Performance study of various recipes :
 - light yield
 - transmission & attenuation lengths
- Development of purification system
 - Al_2O_3 adsorption
 - Filtration
 - Vacuum distillation
 - Water extraction, etc
- Long-term stability test
- Reaction with acrylic, stainless steel

Baseline for Gd-loaded Liquid Scint. Baseline Recipe : - PC(20%) + Dodecane(80%) + (PPO with bis-MSB or BPO) - 0.1% Gd compounds with CBX or BDK Extensive study on LAB this year Carboxylic acids β-diketonates $\begin{array}{ccc} \mathbf{R}_1 & - & \mathbf{C} & - & \mathbf{CH}_2 & - & \mathbf{C} & - & \mathbf{R}_2 \\ & & & || & & & || \\ & & \mathbf{O} & & \mathbf{O} \end{array}$ Gd_2O_3 Gd₂O₃ 🕂 **O**- H+ **GdBDK GdCBX** \mathbf{R}_{2} R Gd^{3+} HC -R₁

R,

	🛛 Gd	loading	created	degradation	in light yield
--	------	---------	---------	-------------	----------------

	Chooz	Palo Verde
Gd	Gd(NO ₃) ₃	Gd ₂ O ₃
Loading Methods	Dissolved in hexanol + LS	Converted to carboxylate + LS
Light yield degradation	0.4 % / day	0.03 % / day
Remarks	Unstable →Turned Yellow	Stable → still usable

Gd loading is not trivial :

- collaborating with experienced Russian groups (INR/IPCE)

 \rightarrow 6 months stable Gd-LS

R&D with Linear Alkylbenzene (LAB)

LAB : $(C_6H_5)C_NH_{2N+1}$ (N=10~13)

Linear Alkyl Benzene (LAB)

Pro

- •High light yield
- •Good transparency: better than PC
- •High flash point: ~140 °C > PC 48 °C
- •Environment friendly: PC is toxic
- •domestically available: Isu Chemical Ltd.
- •VERY CHEAP!!!

Con

composition variation

Composition of LAB

Gas Chromatography/Mass Spectroscopy

LAB : $(C_6H_5)C_NH_{2N+1}$ (N=10~13)

R&D with Linear Alkylbenzene (LAB)

PMT Test

•PMTs considered.

Hamamatsu : R5912(8"), R7081(10")
Photonis : XP1806(8"), XP1804(10.6")
ETL : 9354 (to be tested)

Tested single photoelectron resolution and radioactive background

HPGe measurements show that backgrounds are secular equilibrium.

²³⁸U Radioactivity

Comparison between PMTs

		R9512	R7081	XP1806	XP1804
Gain (X10 ⁷)		1.0 @1500V	1.0 @ 1500V	1.0 @1600V	1.0 @1600V
QE @ peak		22% @390	25% @390	24% @420	24% @420
DC (nA)		50	50	30	30
Size (inch)		8	10	8	10.6
Weight (g)		720	1150	880	1744
Rise Time (ns)		3.8	4.3	5	5
TTS (ns)		2.4	2.9	2.4	2.4
Afterpulse		2%	2%	12%	12%
Peak/Valley ra	itio	~4	~3.5	~3.5	~3.5
	K	2.1	8.3	3.12	6.1
Radioactivity (Bg/PMT)	Th	0.52	1.14	0.22	0.32
	U	0.78	2.68	1.57	3.26
Bg (E>1MeV) (With G4 simul	(Hz) ation	12.4	37.5	16.2	32.1

"Prototype" Detector

- Small size working detector for
 - Checking the validity of MC and tuning it
 - Developing data analysis method
 - R&D of detector structure
 - PMT performance test and background studies
 - Optical properties of acrylic vessel

Liguid	Scintil	lator	mixture
--------	---------	-------	---------

	Target	γ catcher
PC	1.6 L	56 L
MO	2.4 L	84 L
PPO	3 g/L	3 g/L
Bis-MSB	0.05 g/L	0.05 g/L
Gd	1 g/L	0

Prototype Construction

Mounting PMTs

Inner acrylic vessel

Acrylic vessels

assembled prototype

Filling with liquid scintillator

Nitrogen flushing of LS

Calibration of Prototype Detector

Working "Mock-up" Detector

Smaller size fully functioning detector (sans veto).
Exercise for building and running a sizable scale detector

fluid handling
electronics
data handling

basis for very near detectors?
will start construction shortly

- target 17 l
- γ catcher 199 ℓ
- buffer 621 l

expected Gd captured neutron tagging efficiency

Sensitivity

90%CL sensitivity after 3 years of data taking

Summary

- Project was approved for funding in 2005.
- Budget allocated in Dec. 2005.
- Experiment site usage has been approved.
- Geological survey carried out and rock samples obtained.
- Technical Design Report is expected to be ready by July 2007.
- Detector Construction will begin in Oct. 2007.
- Data taking expected to start in early 2010.
- International Collaborators are being invited.

Backup Slides

Attenuation Lengths of different solvents before/after purification

	Before (m)	After (m)
PXE	1.0	1.3
Dodecane	15.2	16.2
PC	5.9	8.2
MO	9.7	N/A
LAB (batch1)	9.5	15.2
LAB (batch2)	7.7	14.7

Absorption Measurement

Purification by Al_2O_3 adsorption

37

Optimization of PPO, bis-MSB Concentration for LAB

Osaka, Japan

Characteristics of Various Solvents

	Chemical elements	H:C	M.W. (g/mol)	Density (g/ml)	Boiling P oint	Flash Point	Viscosity @20℃	comments
decane	C10H22		142.29	0.73	174	46	0.92cps	Domestically available
dodecane	C12H26	2.17	170.34	0.7493	216.2	71		Expensive
tetradecane	С14Н30		198.3922	0.767	253	99		
PC(=TMB)	С9Н12	1.33	120.2	0.89(0.876)	169	48		Toxic Low FP
LAB	C6H5 (CnH2n+1)		233-237	0.86	275-307	130	5-10cps	R&D in progress Nontoxic Inexpensive
PXE	С16Н18	1.12	210.3	0.988	295	145	5.2cSt@40	Less toxic Supply limited
MO	CnH2n+2, n=10- 44			~0.8		~110	10-80cSt@40	Uncertainty in no. of protons
PC20dod80		2		0.78				
PXE20dod80		1.96		0.80		>80		
PC20M080				0.857				
PC40MO60				0.866				

Performance of Gd in PC & LAB

□ LAB has lower optical absorption, better attenuation length

□100% LAB and PC have similar light outputs

□ We got similar results with BNL & Daya Bay experiment

□ Nitrogen flushing effect is seen