What can DBD experiments do?

Hisakazu Minakata Tokyo Metropolitan University

The question

- The question I want to address in this talk is ``what can you do and what would be the implications of DBD experiments?"
- One of the most important experiments in particle physics

v oscillation has been seen!

Mini-BooNE did NOT confirm LSND data

No strong motivation for structure beyond 3 generation mixing

June 11-13, 2007

General statement

June 11-13, 2007

Whatever diagrams cause $0\nu\beta\beta$, its observation would imply the existence of a Majorana mass term

Schechter and Valle

 $(\bar{v})_R \rightarrow v_L$: A Majorana mass term

June 11-13, 2007

DBD07@Osaka

Borrowed from Boris

Why don't want to know the nature of neutrinos

- Many theorists say it is ``Majorana'' because it is the case in my model(s)
- ... in most models
- We need less model dependent argument

June 11-13, 2007

Yanagida's argument

Delivered at DBD05 in Hawaii

- There is a strong argument which says that v must be Majorana particle
- We know that our universe is asymmetric to baryon number
- We know that above 1 TeV, only meaningful quantum number is B-L, not B or L separately, because of anomaly ("sphaleron")
- Therefore, we must have B+L generation to have nonzero baryon number June 11-13, 2007

Yanagida's argument (continued)

- Let us assume SM of particle physics => no operator which violates B+L
- The lowest dimension operator which violate B-L is

 $(1/M) \phi \phi v \psi$ which must exists

- This is consistent with the neutrino mass operator required by SK, SNO, KamLAND, and K2K, and others (confirmed to exists!)
- Therefore, v Majorana mass must exist (otherwise, we do not have baryon # excess)

June 11-13, 2007

Success guaranteed

- There is a well defined model of baryon number generation embodying this idea
 Ieptogenesis
 - Double beta decay experiments are guaranteed to have a success !
 - Practically, ???

Rest of my talk

- What quantities can DBD experiments determine ?
- What would be implications of successful DBD experiments, in particular
- Absolute v mass
 Majorana phase

Looking for experiments for proving Majorana v

June 11-13, 2007

Kayser's π +N -> 2 μ ⁺ + X experiment

Give the neutrino a Boost: $\beta_{\pi}(Lab) > \beta_{\nu}(\pi \text{ Rest Frame})$

Minor Technical Difficulties

$$\beta_{\pi}(Lab) > \beta_{\nu}(\pi \text{ Rest Frame})$$

$$\Rightarrow \frac{E_{\pi}(Lab)}{m_{\pi}} > \frac{E_{\nu}(\pi \text{ Rest Frame})}{m_{\nu_{i}}}$$
$$\Rightarrow E_{\pi}(Lab) \geq \frac{10^{5} \text{ TeV if } m_{\nu_{i}} \sim 0.05 \text{ eV}}{10^{5} \text{ TeV if } m_{\nu_{i}} \sim 0.05 \text{ eV}}$$

Fraction of all π – decay v_i that get helicity flipped

$$\approx \left(\frac{m_{v_i}}{E_v(\pi \text{ Rest Frame})}\right)^2 \sim 10^{-18} \text{ if } m_{v_i} \sim 0.05 \text{ eV}$$

Since L-violation comes only from Majorana neutrino *masses*, any attempt to observe it will be at the mercy of the neutrino masses.

(BK & Stodolsky)

June 11-13, 2007

Double beta decay; an ingenious way

Double-beta decay:

a second-order process only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

Lifetime of $0\nu\beta\beta$ decay

Why minimum m_{ee} in inverted hierarchy?

$$\begin{split} \langle m \rangle_{\beta\beta} &= \left| \begin{array}{c} \sum_{i=1}^{3} m_{i} U_{ei}^{2} \\ &= \left| \begin{array}{c} m_{1} c_{12}^{2} c_{13}^{2} e^{-i\beta} + m_{2} s_{12}^{2} c_{13}^{2} e^{+i\beta} + m_{3} s_{13}^{2} e^{i(3\gamma - 2\delta)} \end{array} \right. \end{split}$$

Inverted hierarchy => minimum at $cos2\beta$ = -1

$$\langle m
angle_{etaeta} \geq c_{13}^2 \left| m_1 c_{12}^2 - m_2 s_{12}^2 \right| - m_3 s_{13}^2.$$

<== Cannot cancel out for nonmax. θ_{12}

Case of inverted mass hierarchy

June 11-13, 2007

DBD01 WUSana

DBD07@Osaka

Perturbative correction does not alter CP parities

Normalized mass matrix $\widehat{\mathcal{M}}_{\nu}$	$\stackrel{\rm zero \ term}{\widehat{\mathcal{M}}_{\nu}^{\rm atm}}$	$\begin{array}{c c} \text{solar mass correction} & \text{QLC correct} \\ \widehat{\mathcal{M}}_{\nu}^{\text{sol}} & \widehat{\mathcal{M}}_{\nu}^{\text{QLC}} \end{array}$		Eigenvalues
normal hierarchy	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\gamma}{2} \left[\begin{array}{ccc} -4\lambda_{\nu} & 0 & 0 \\ 0 & \lambda_{\nu} & \lambda_{\nu} \\ 0 & \lambda_{\nu} & \lambda_{\nu} \end{array} \right]$	$egin{aligned} (0,\gamma,1)\ \gammapprox\lambda \end{aligned}$
inverted hierarchy with same CP parities	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 1 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\frac{\gamma}{2} \begin{bmatrix} -2\lambda_{\nu} & 0 & 0 \\ 0 & \lambda_{\nu} & \lambda_{\nu} \\ 0 & \lambda_{\nu} & \lambda_{\nu} \end{bmatrix}$	$(1,(1+\gamma),0)$ $\gammapprox\lambda^2/2$
inverted hierarchy with opposite CP parities	$\begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} \end{bmatrix}$	$\begin{bmatrix} 2\lambda_{\nu} & 0 & 0 \\ 0 & -\lambda_{\nu} & -\lambda_{\nu} \\ 0 & -\lambda_{\nu} & -\lambda_{\nu} \end{bmatrix}$	$\begin{array}{c} (1,-(1+\gamma),0) \\ \gamma \approx \lambda^2/2 \end{array}$

- Perturbative mass generation:
- $M_v = M_v^{atm} + M_v^{solar} + M_v^{QLC}$

June 11-13, 2007

DBD07@Osaka

Ferrandis-Pakvasa 04

Leptogenesis; attractive model for B generation

June 11-13, 2007

Leptogenesis

- Lepton # asymmetry generated by Majorana v converted to baryon # asym. by "spharelon"
- Offers interesting connection between neutrino mass and cosmological baryon number asymmetry
- Can give rise to bound on neutrino mass, √m²
 < 0.3 eV

Fukugita-Yanagida 86

Figure 2: Maximal baryon asymmetry η_{B0}^{\max} (blue) as function of \widetilde{m}_1 and M_1 for $\overline{m} = 0.05 \text{ eV}$. The black lines are curves of constant baryon asymmetry with the value indicated. The lines around the intersection with the green plane correspond to the measured value and the upper/lower limits at 3σ .

(Buchmuller et al.)

June 11-13, 2007

Flavored leptogenesis

Connecting low E CPV to leptogenesis

 Under some assumptions of Casas-Ibarra matrix R

FIG. 2 (color online). The baryon asymmetry $|Y_B|$ versus the effective Majorana mass in neutrinoless double beta decay, $\langle m_{\nu} \rangle$, in the case of Majorana *CP*-violation, hierarchical RH neutrinos and IH light neutrino mass spectrum, for $\delta = 0$, $s_{13} = 0$, purely imaginary $R_{11}R_{12}$, $|R_{11}| = 1.05$ and $M_1 = 2 \times 10^{11}$ GeV. The Majorana phase α_{21} is varied in the interval $[-\pi/2, \pi/2]$.

FIG. 3 (color online). The quantity $|\langle m_{\nu} \rangle|$ versus the baryon asymmetry varying α_{32} between 0 and $\pi/3$ for the case of degenerate RH neutrinos and QD for light neutrinos for $\delta = DBD07@Osa \pi/3$, $s_{13} = 0.01$, $M_1 = 10^{10}$ GeV and m = 0.1 eV.

June 11-13, 2007

Is inverted mass hierarchy discriminable?

June 11-13, 2007

To distinguish mass hierarchy ...

June 11-13, 2007

Possible better strategy

Better strategy (to my opinion)

 Determine hierarchy by some other methods and utilize DBD informations to ``get most''

Ongoing longest-baseline experiment MINOS

June 11-13, 2007

An example; T2KK; Tokai to Kamioka-Korea

Ishitsuka-Kajita-HM-Nunokawa hep-ph/0504026

June 11-13, 2007

Signal at ~50 meV; what does it mean?

Inverted mass hierarchy without extra m₀

• $m_0 \sim 0$ can be inferred, e.g., by Planck satellite

$$\langle m \rangle_{ee} \approx \left| c_{12}^2 m_1 + s_{12}^2 m_2 e^{i(\phi_2 - \phi_1)} \right|$$

$$c_{12}^2 m_1 \simeq c_{12}^2 \sqrt{\Delta m_{atm}^2} \simeq 0.035 \ eV$$

$$s_{12}^2 m_2 \simeq s_{12}^2 \sqrt{\Delta m_{atm}^2} \simeq 0.015 \ eV$$

$$s_{13}^2 m_3 \simeq s_{13}^2 \sqrt{\Delta m_{\odot}^2} < 0.025 \times 9 \cdot 10^{-3} \simeq 2.2 \times 10^{-4} \ eV$$

$$0.02 \ eV < \sqrt{\Delta m_{atm}^2} \cos 2\theta_{12} < \langle m \rangle_{ee} < \sqrt{\Delta m_{atm}^2} = 0.05 \ eV$$

Majorana phase may be measured

June 11-13, 2007

Signal at ~50 meV; what does it mean?

Normal mass hierarchy without extra m₀

$$\begin{split} \langle m \rangle_{ee} &\approx \left| c_{12}^2 m_1 e^{i\phi_1} + s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right| \\ c_{12}^2 m_1 &\simeq c_{12}^2 \sqrt{\Delta m_{\odot}^2} \simeq (6.2 \times 10^{-3} \leftrightarrow 0.0) \ eV \\ s_{12}^2 m_2 &\simeq s_{12}^2 \sqrt{\Delta m_{\odot}^2} \simeq 2.7 \times 10^{-3} \ eV \\ s_{13}^2 m_3 &\simeq s_{13}^2 \sqrt{\Delta m_{atm}^2} \approx 0.025 \times 0.05 \ eV \simeq 1.3 \times 10^{-3} \ eV \end{split}$$

0 $eV < \langle m \rangle_{ee} \sim$ (a few - several) $meV < \sqrt{\Delta m_\odot^2} = 0.01~eV$

- Definitely implies extra mass scale m₀
- Harder to obtain Majorana phase information

June 11-13, 2007

Degenerate v mass

Experimentally the clearest situation !

- If m_{ee} discovered in "degenerate mass region" (as claimed by Klapdor et al) it implies that there is new mass scale >> sqrt{ Δm_{atm}^2
- => most probably new scale different from GUT

Uncertainty of nuclear matrix elements

 $0\nu\beta\beta$ decay half lives in 10^{26} yr units for $\langle m_{\nu} \rangle = 50$ meV according to different nuclear matrix element calculations

Unfortunately it is not trivial to use the 2v matrix element to normalize the Ov one:

- $|M_{2v}|$ has stronger dependence on intermediate states
- |M_{0v}| all multipoles contribute
 - v propagator results in long range potential

Lepton-Photon 03

FIG. 2: Average nuclear matrix elements $\langle M'^{0\nu} \rangle$ and their variance (including the error coming from the experimental uncertainty in $M^{2\nu}$) for both methods and for all considered nuclei. For ¹³⁶Xe the error bars encompass the whole interval related to the unknown rate of the $2\nu\beta\beta$ decay.

Sensitivity to g_{pp} cancel against its 2v counterpart

¹⁰⁰Mo

¹³⁶Xe

all others

all others

0.9

g_{pp}

0.8

1.0

1.1 1.2

Shell model vs. QRPA

TABLE XVII Calculated $T^{2\nu}_{1/2}$ half-lives for several nuclei and $0^+ \to 0^+$ transitions

TABLE XVIII 0ν matrix elements and upper bounds on the neutrino mass for $T_{1/2}^{0\nu} \ge 10^{25}$ y. $\langle m_{\nu} \rangle$ in eV.

Parent	^{48}Ca	^{76}Ge	^{82}Se	Pare
$T_{1/2}^{2\nu}$ th.(y)	$3.7 imes10^{19}$	$2.6 imes10^{21}$	3.7×10^{19}	M_G° M_G^0
$T_{1/2}^{2\nu} \exp(y)$	$4.3 imes10^{19}$	$1.8 imes 10^{21}$	8.0×10^{19}	$\langle m_{\nu}$

 Parent
 ${}^{48}Ca$ ${}^{76}Ge$ ${}^{82}Se$
 $M_{GT}^{0\nu}$ 0.63
 1.58
 1.97

 $M_F^{0\nu}$ -0.09
 0.19
 -0.22

 $\langle m_{\nu} \rangle$ 0.94
 1.33
 0.49

Caurier et al., nucl-th/0402046

Conclusion

- 0vββ decay: unique for demonstrating Majorana v + indispensible for absolute mass determination
- Majorana phase or CP parity important for understanding physics
- Uncertainty of nuclear matrix elements
 = most important problem for interpretation of the results
- Gives great opportunity in the future (with LBL experiments)

Seesaw mechanism as a paradigm of neutrino mass

• $W = N^{c} Y_{v}LH - E^{c} Y_{v}LH +$ (1/2) N^cMN Minkowski, Yanagida, Gell-Mann-Ramond-Slansky, ...

(N=R-handed Majorana, L=left doublet, E=charged lepton, H=higgs)

- $m_{\nu} = Y_{\nu} T(M_{diag})^{-1} Y_{\nu}$
- Y_v has 6 phases
- Leptogenesis is sensitive to $Y_{\nu}Y_{\nu}^{+}$ (3 left phases, independent of low energy CPV phase)
- CP violating LFV appears from Y⁺_v (1 right phase)
 June 11-13, 2007
 DBD07@Osaka