Why neutrinos?

Hitoshi Murayama (Berkeley) Double Beta Decay and Neutrinos Osaka, June 12, 2007

Introduction

- Neutrino physics has been full of surprises
- We've learned a lot in the last ~8 years
- We want to learn more. Why?
- Window to short distance, early universe
- What exactly *can* we learn from neutrinos?
 - Origin of neutrino mass?
 - Origin of baryon asymmetry?
 - Origin of universe?
- Need data from neutrino oscillations, colliders, $0\nu\beta\beta$, dark matter, cosmology, rare decays Osaka, June 12, 2007

Outline

- Past
- What we now know
- The Big Questions
- Seesaw
- Synergy
- Conclusion

Past

Why Neutrinos?

Interest in Neutrino Mass

- So much activity on neutrino mass already. *Why am I interested in this?* Window to (way) high energy scales beyond the Standard Model!
- Two ways:
 - Go to high energies
 - Study rare, tiny effects 🧲

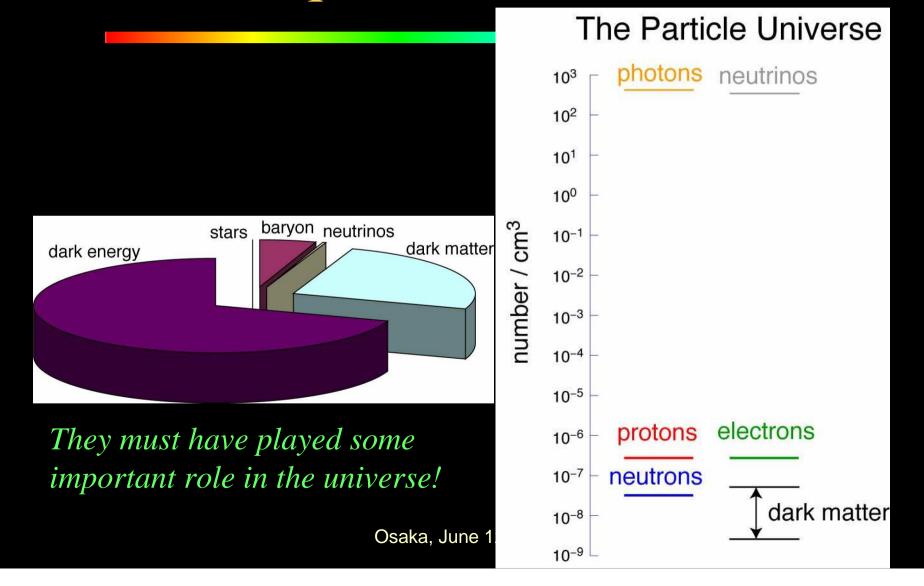
Rare Effects from High-Energies

• Effects of physics beyond the SM as effective operators 1

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \cdots$$

• Can be classified systematically (Weinberg)

- $\mathcal{L}_5 = (LH)(LH) \to \frac{1}{\Lambda} (L\langle H \rangle)(L\langle H \rangle) = m_{\nu} \nu \nu$
- $\mathcal{L}_{6} = QQQL, \bar{L}\sigma^{\mu\nu}W_{\mu\nu}He,$ $\epsilon_{abc}W^{a\mu}_{\nu}W^{b\nu}_{\lambda}W^{c\lambda}_{\mu}, (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H), \cdots$

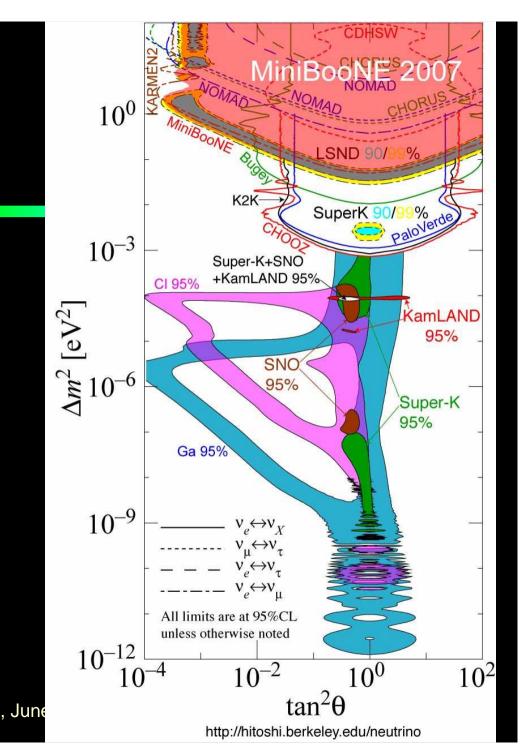

Unique Role of Neutrino Mass

- Lowest order effect of physics at short distances
- Tiny effect $(m_v/E_v)^2 \sim (0.1 \text{ eV/GeV})^2 = 10^{-20}!$
- Interferometry (*i.e.*, Michaelson-Morley)
 - Need coherent source
 - Need interference (*i.e.*, large mixing angles)
 - Need long baseline

Nature was kind to provide all of them!

• "neutrino interferometry" (a.k.a. neutrino oscillation) a unique tool to study physics at very high scales

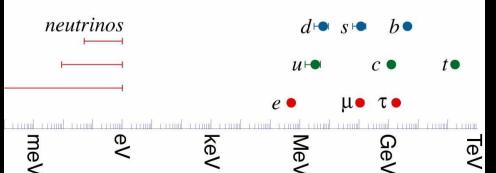

Ubiquitous Neutrinos



What we now know

The Data

- Atmospheric
 - $-\Delta m_{23}^2 \sim 2.5 \times 10^{-3} \text{eV}^2$
 - $-\sin^2 2\theta_{23} \sim 1$
- Solar
 - $-\Delta m_{12}^2 \sim 3 12 \times 10^{-5} \text{eV}^2$
 - $-\sin^2 2\theta_{12} \sim 0.9$
- Reactor
 - $-\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{eV}^2$
- Accelerator (K2K/MINOS)
- LSND vs Mini-BooNE


What we learned

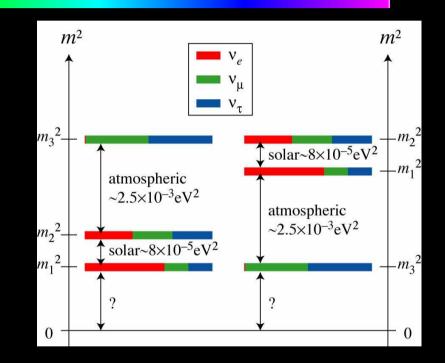
- Lepton Flavor is not conserved
- Neutrinos have tiny mass, not very hierarchical
- Neutrinos mix a lot

the first evidence for

incompleteness of Minimal Standard Model

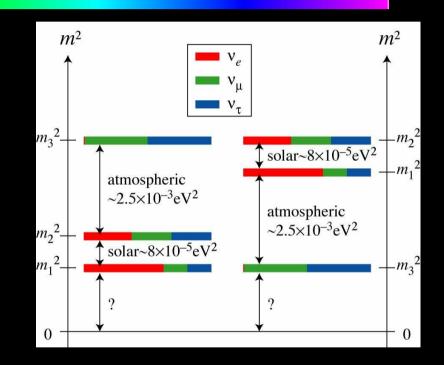
Very different from quarks

Typical Theorists' View ca. 1990


- Solar neutrino solution *must* be small angle MSW solution because it's cute *Wrong!*
- Natural scale for $\Delta m_{23}^2 \sim 10-100 \text{ eV}^2$ because it is cosmologically interesting *Wrong!*
- Angle θ_{23} must be ~ $V_{cb} = 0.04$ Wrong!
- Atmospheric neutrino anomaly must go away because it needs a large angle

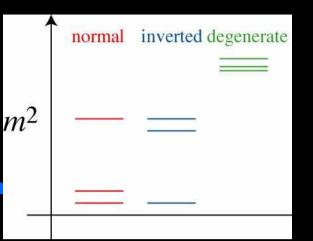
The Big Questions

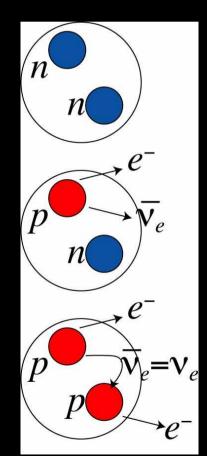
- What is the origin of neutrino mass?
- Did neutrinos play a role in our existence?
- Did neutrinos play a role in forming galaxies?
- Did neutrinos play a role in birth of the universe?
- Are neutrinos telling us something about unification of matter and/or forces?
- Will neutrinos give us more surprises?
 Big questions ≡ tough questions to answer


Immediate Questions

- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

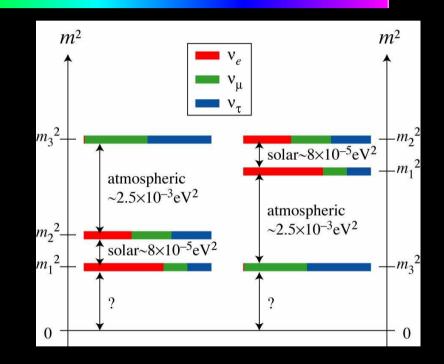
Immediate Questions


- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?


Extended Standard Model

- Massive Neutrinos \Rightarrow Minimal SM incomplete
- How exactly do we extend it?
- Abandon either
 - Minimality: introduce new unobserved light degrees of freedom (right-handed neutrinos)
 - Lepton number: abandon distinction between neutrinos and antineutrinos and hence matter and anti-matter
- Dirac or Majorana neutrino
- Without knowing which, we don't know how to extend the Standard Model

$0\nu\beta\beta$



- The only known practical approach to discriminate Majorana vs Dirac neutrinos $0\nu\beta\beta$: $nn \rightarrow ppe^-e^-$ with no neutrinos
- Matrix element $\propto \langle m_{ve} \rangle = \sum_i m_{vi} U_{ei}^2$
- Current limit $|\langle m_{ve} \rangle| \leq about 1eV$
- $m_3 \sim (\Delta m_{23}^2)^{1/2} \approx 0.05 \text{eV}$ looks a promising goal
- Good chance to discover it for degenerate and inverted spectra $\langle m_{ve} \rangle > 0.01 \text{eV}$
- Not clear if we can see it for the normal spectrum, need ~0.001 eV sensitivity
- Majorana, CANDLES, Cuore, GERDA, MOON, EXO, XMASS, SuperNEMO, COBRA, ...

Immediate Questions

- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

Now that LMA is confirmed...

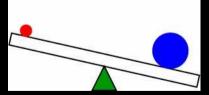
- Δm_{12}^2 , s_{12} came out as large it could be (LMA)
- Dream case for neutrino oscillation physics! Δm^2_{solar} within reach of long-baseline expts
- Even CP violation may be probed
 - neutrino superbeam
 - muon-storage ring neutrino factory

$$P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}$$
$$\sin\delta\sin\left(\frac{\Delta m_{12}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{13}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{23}^{2}}{4E}L\right)$$

• What it would take to see it depends on θ_{13} !

- Two approaches
- Reactor anti-neutrino experiments
 - Disappearance of anti- V_e
 - measures purely $\sin^2 2\theta_{13}$
 - Double-CHOOZ, Daya Bay, RENO, ANGRA, ...
- Long-baseline accelerator experiments
 - Appearance of V_e from V_{μ}
 - Combination of θ_{13} , matter effect, CP phase
 - MINOS, T2K, NO*v*A, T2KK, ...

The Big Questions

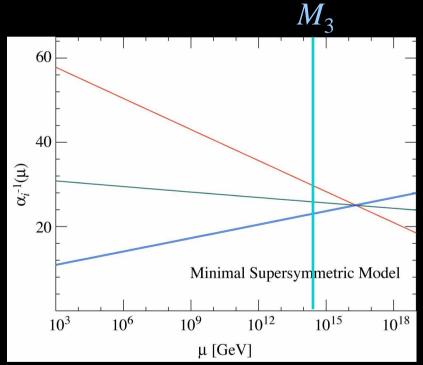

- What is the origin of neutrino mass?
- Did neutrinos play a role in our existence?
- Did neutrinos play a role in forming galaxies?
- Did neutrinos play a role in birth of the universe?
- Are neutrinos telling us something about unification of matter and/or forces?
- Will neutrinos give us more surprises?
 Big questions ≡ tough questions to answer

Seesaw

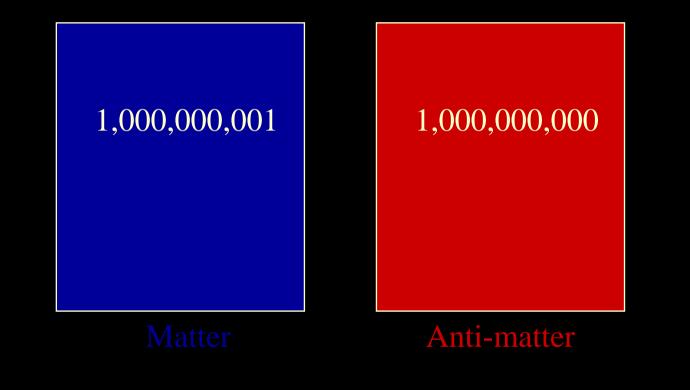
Seesaw Mechanism

- Why is neutrino mass so small?
- Need right-handed neutrinos to generate neutrino mass, but v_R SM neutral

$$\begin{pmatrix} v_L & v_R \end{pmatrix} \begin{pmatrix} m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} v_L \\ v_R \end{pmatrix} \qquad m_v = \frac{m_D^2}{M} << m_D$$



To obtain $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim m_t$, $M_3 \sim 10^{14} \text{GeV}$


Grand Unification

- electromagnetic, weak, and strong forces have very different strengths
- But their strengths become the same at ~2×10¹⁶ GeV if supersymmetry
- To obtain

 $m_3 \sim (\Delta m_{atm}^2)^{1/2}, m_D \sim m_t$ $\Rightarrow M_3 \sim 10^{14} \, \text{GeV!}$

Matter and Anti-Matter Early Universe

Matter and Anti-Matter Current Universe

us

1

MatterAnti-matterThe Great Annihilation

Osaka, June 12, 2007

Baryogenesis

- What created this tiny excess matter?
- *Necessary* conditions for baryogenesis (Sakharov):
 - Baryon number non-conservation
 - CP violation
 - (subtle difference between matter and anti-matter)
 - Non-equilibrium
 - $\Rightarrow \Gamma(\Delta B {>} 0) > \Gamma(\Delta B {<} 0)$
- It looks like neutrinos have no role in this...

Electroweak Anomaly

- Actually, SM converts L
 (v) to B (quarks).
 - In Early Universe (T > 200GeV), W is massless and fluctuate in W plasma
 - Energy levels for lefthanded quarks/leptons fluctuate correspondingly

$$\Delta L = \Delta Q = \Delta Q = \Delta Q = \Delta B = 1 \Longrightarrow \Delta (B - L) = 0$$

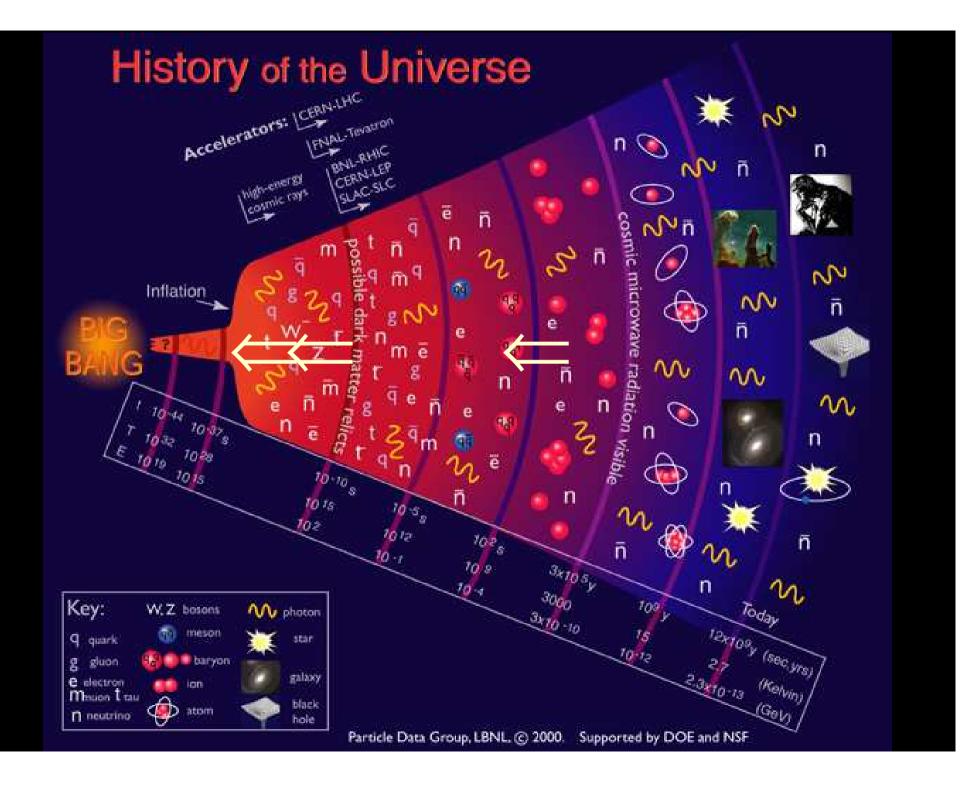
Leptogenesis

- You generate *Lepton Asymmetry* first. (Fukugita, Yanagida)
- Generate *L* from the direct CP violation in right-handed neutrino decay

 $\Gamma(N_1 \to \nu_i H) - \Gamma(N_1 \to \overline{\nu}_i H) \propto \operatorname{Im}(h_{1j} h_{1k} h_{lk}^* h_{lj}^*)$

- L gets converted to B via EW anomaly
 ⇒ More matter than anti-matter
 ⇒ We have survived "The Great Annihilation"
- Despite detailed information on neutrino masses, it still works (*e.g.*, Bari, Buchmüller, Plümacher)

Origin of Universe


• Maybe an *even bigger* role: inflation

- Need a spinless field that
 - slowly rolls down the potential
 - oscillates around it minimum
 - decays to produce a thermal bath
- The superpartner of right-handed neutrino fits the bill
- When it decays, it produces the lepton asymmetry at the same time (HM, Suzuki, Yanagida, Yokoyama)
- Decay products: supersymmetry and hence dark matter

Neutrino is mother of the Universe?

size of the universe

30

Can we prove it experimentally?

- Short answer: no. We can't access physics at >10¹⁰ GeV with accelerators directly
- But: we will probably believe it if the following scenario happens

Archeological evidences

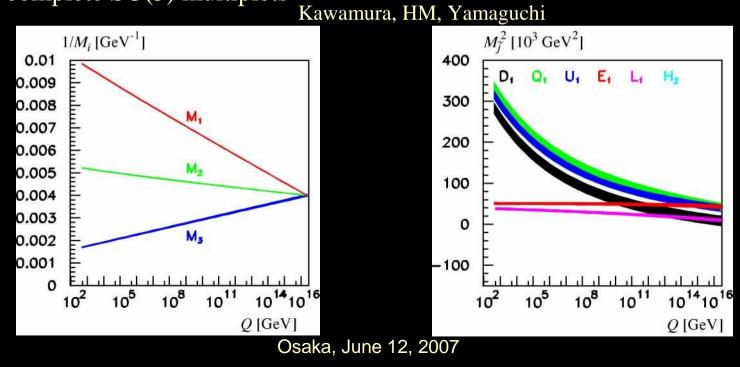
A scenario to "establish" seesaw

- We find CP violation in neutrino oscillation
 - At least proves that CP is violated in the lepton sector
- U_{e3} is not too small

 At least makes it plausible that CP asymmetry in right-handed neutrino decay is not unnaturally suppressed

• But this is not enough

A scenario to "establish" seesaw

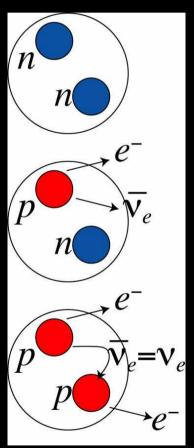

- LHC finds SUSY, ILC establishes SUSY
- no more particles beyond the MSSM at TeV scale
- Gaugino masses unify (two more coincidences)
- Scalar masses unify for 1st, 2nd generations (two for 10, one for 5*, times two)

 \Rightarrow strong hint that there are no additional particles beyond the MSSM below M_{GUT} except for gauge singlets.

Gaugino and scalars

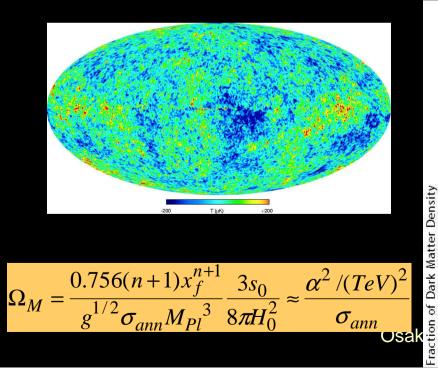
- Gaugino masses test unification itself independent of intermediate scales and extra complete SU(5) multiplets
- Scalar masses test beta functions at all scales, depend on the particle content

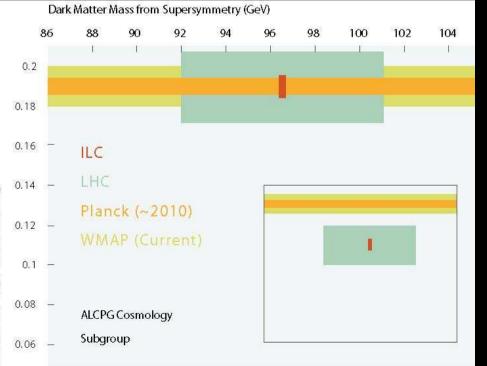
36



A scenario to "establish" seesaw

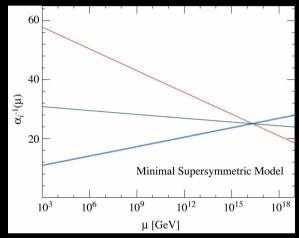
- Next generation experiments discover neutrinoless double beta decay
- Say, $\langle m_v \rangle_{ee} \sim 0.1 \text{eV}$
- There must be new physics below $\Lambda \sim 10^{14} GeV$ that generates the Majorana neutrino mass

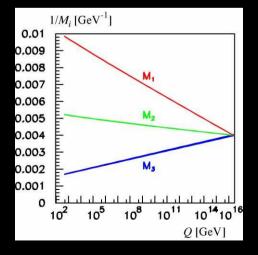

 $\mathcal{L}_5 = (LH)(LH) \rightarrow \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$

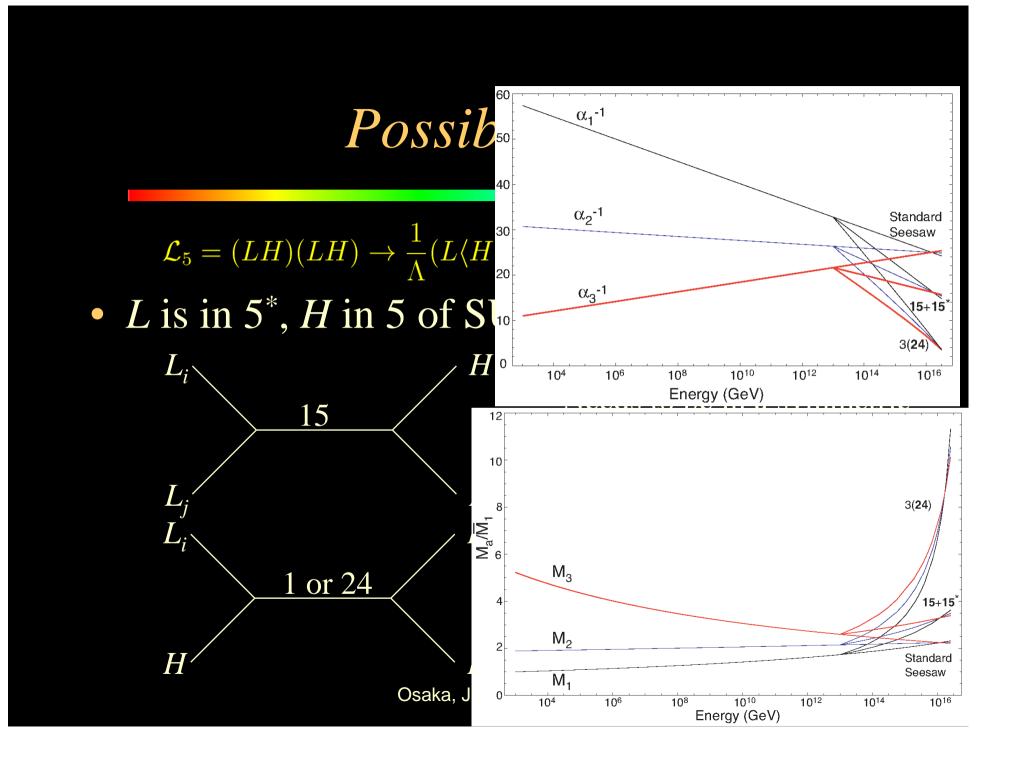

• But it can also happen with R-parity violating SUSY

A scenario to "establish" seesaw

- It leaves the possibility for *R*-parity violation
- Consistency between cosmology, dark matter detection, and LHC/ILC will remove the concern



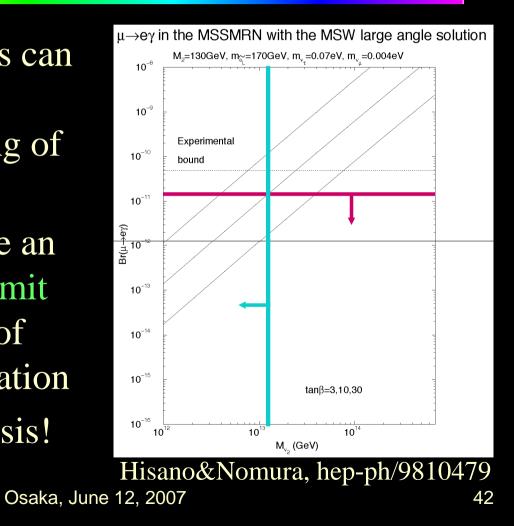

Need "New Physics" $\Lambda < 10^{14} \text{GeV}$


• Now that there must be D=5 operator at $\Lambda < a$ few $\times 10^{14} \text{GeV} < M_{GUT}$, we need new particles below M_{GUT}

 $\mathcal{L}_5 = (LH)(LH) \rightarrow \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$

• Given gauge coupling and gaugino mass unification, they have to come in complete *SU*(5) multiplets

Scalar masses tell them apart


$\Lambda = 10^{13} \text{GeV}$	Standard	Modified	Type-II
	seesaw	Type-I	
New particles	3×1	3×24	$15 + 15^*$
$(m_Q^2 - m_U^2)/M_1^2$	1.90	4.68	2.29
$(m_Q^2 - m_E^2)/M_1^2$	21.30	29.52	22.60
$(m_D^2 - m_L^2)/M_1^2$	17.48	20.15	18.02

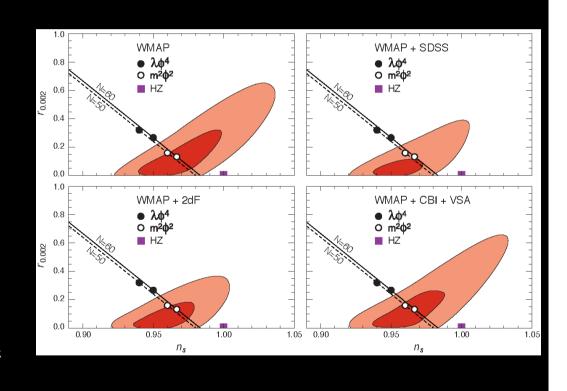
Matt Buckley, HM

Osaka, June 12, 2007

What about Yukawa couplings?

- Yukawa couplings can in principle also modify the running of scalar masses
- We may well have an empirical upper limit on *M* by the lack of lepton-flavor violation
- Justifies the analysis!

If this works out


- Evidence for SU(5)-like unification hard to ignore
- Only three possible origins of Majorana neutrino mass < 10¹⁴ GeV consistent with gauge coupling and gaugino unification
- Only one consistent with scalar mass unification
- Could well "establish" the standard seesaw mechanism this way
- Need collider, dark matter, $0\nu\beta\beta$, cosmology, LFV, proton decay

Leptogenesis?

- No new gauge non-singlets below M_{GUT}
- Either
 - Baryogenesis due to particles we know at TeV scale, *i.e.*, electroweak baryogenesis
 - Baryogenesis due to gauge-singlets well above TeV, *i.e.*, leptogenesis by V_R
- The former can be excluded by colliders & EDM
- The latter gets support from Dark Matter concordance, *B*-mode CMB fluctuation that point to "normal" cosmology after inflation
- Ultimate: measure asymmetry in background v's

Origin of the Universe

- Right-handed scalar neutrino: V=m²φ²
- *n_s*~0.96
- *r*~0.16
- Need $m \sim 10^{13} \text{GeV}$
- Consistent with WMAP+LSS
- Verification possible in the near future

Conclusions

- *Revolutions in neutrino physics*
- Neutrino mass probes very high-energy physics
- But how do we know?
- By collection of experiments: collider, dark matter, $0\nu\beta\beta$, cosmology, LFV, proton decay
- We could well find convincing enough experimental evidence for seesaw mechanism
- May even learn something about our existence, the birth of the universe itself

The Ivvisibles

High precision needed

$\Lambda = 10^{14} \text{GeV}$	Standard	tandard Modified	
	seesaw	Type-I	
New particles	3×1	3×24	$15 + 15^*$
$(m_Q^2 - m_U^2)/M_1^2$	1.90	2.41	2.04
$(m_Q^2 - m_E^2)/M_1^2$	21.30	22.58	21.70
$(m_D^2 - m_L^2)/M_1^2$	17.48	17.77	17.62

Matt Buckley, HM

Osaka, June 12, 2007

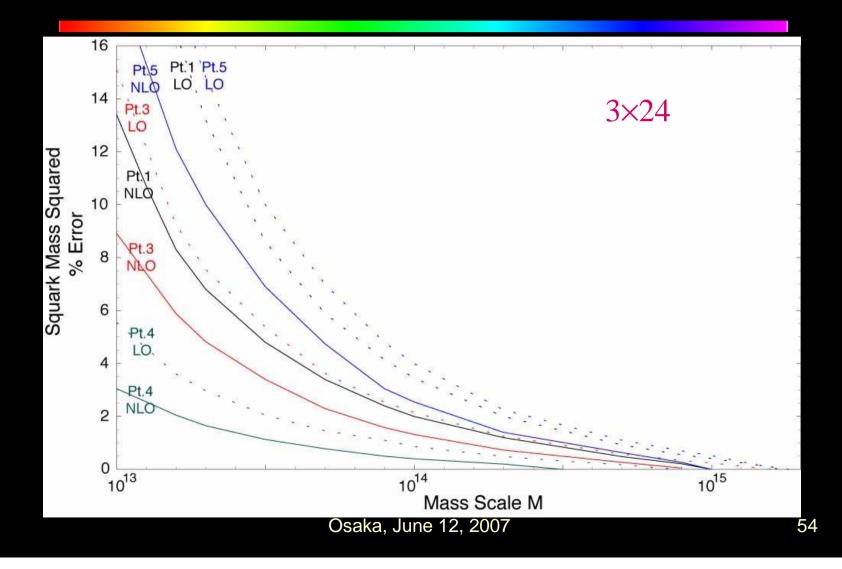
Can we do this?

- CMS: in some cases, squark masses can be measured as $\Delta m \sim 3$ GeV, if LSP mass provided by ILC, with jet energy scale suspect. No distinction between u_R and d_R (Chiorboli)
- ILC measures gaugino mass and slepton mass at permille levels: negligible errors (HM)
- squark mass from kinematic endpoints in jet energies: $\Delta m \sim a$ few GeV (Feng-Finnell)
- Can also measure squark mass from the threshold: $\Delta m \sim 2-4$ GeV (Blair)
- 1% measurement of a kar Jun Not 2 in conceivable

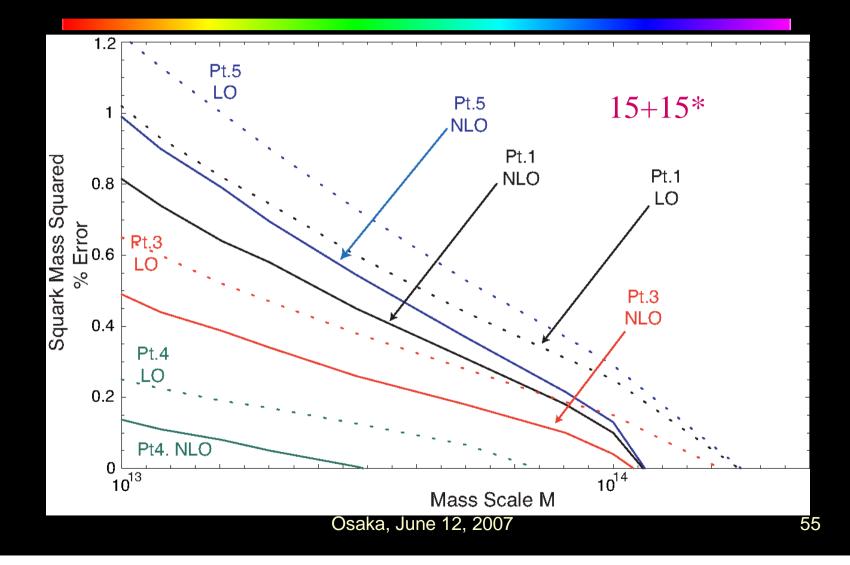
Threshold scan @ ILC

Sparticle	True	True	Fit Mass	Fit Width	Fit Mass Error
	Mass	Width	Error	Error	(Width Fixed)
$ ilde{\mu}_R$	143	0.20	0.18	0.06	0.15
$ ilde{\mu}_L$	202	0.25	0.30	0.11	0.26
$ ilde{u}_R$	520	25	11	14	2.7
\widetilde{u}_L	537	30	5.3	9.0	1.9
$ ilde{d}_R$	520	25	24	30	5.8
\widetilde{d}_L	543	30	8.0	12	2.7
χ_1^+	175	0.002	0.17	0.003	0.09
χ_2^+	364	1.9	0.44	0.24	0.23

100 fb⁻¹ Grahame Blair

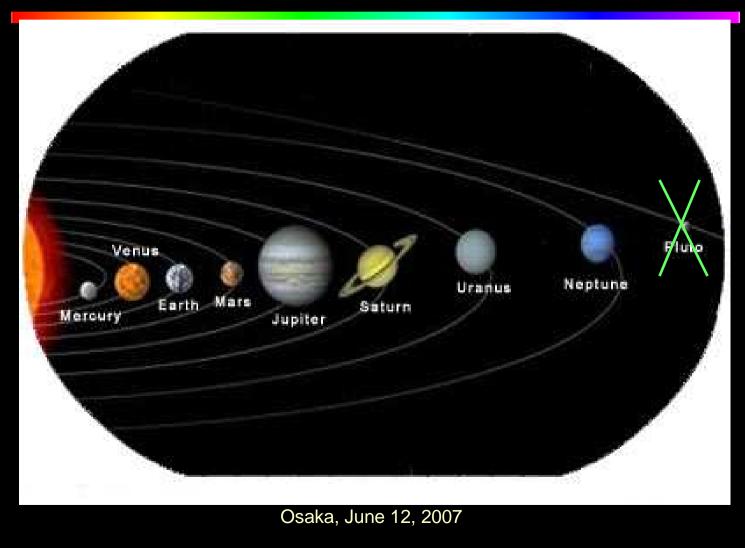

Comments

- Threshold behavior for squark-pair production has not been calculated with QCD effects (à la ttbar threshold)
- Mass differences presumably better measured
 - Jet energy scale uncertainties cancel
 - Difference in end points
 - But flavor tagging a challenge

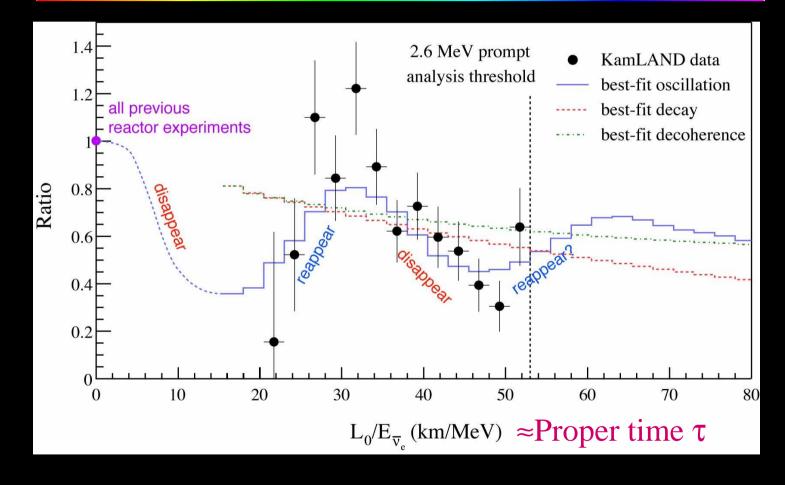

Scalar Mass Unification

- Because the scalar masses also appear to unify, their running constrain gauge nonsinglet particle content below the GUT scale
- Need to see the level of mismatch generated by 3×24 (modified Type I), 15+15* (Type II), compared to 3×1 (Standard seesaw) that does not modify the scalar mass unification

Needed accuracy (3σ)


Needed accuracy (3σ)

Needed accuracy (3σ)


Alignment of the Planets

The Question

- The seesaw mechanism has been the dominant paradigm for the origin of tiny neutrino mass
- Physics close to the GUT scale
- How do we know if it is true? Is there a way to test it experimentally?
- Short answer: No
- However, we can be convinced of it

Neutrinos do oscillate!

