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Introduction

• Neutrino physics has been full of surprises
• We’ve learned a lot in the last ~8 years
• We want to learn more.  Why?
• Window to short distance, early universe
• What exactly canwe learn from neutrinos?

– Origin of neutrino mass?
– Origin of baryon asymmetry?
– Origin of universe?

• Need data from neutrino oscillations, colliders,     
0νββ, dark matter, cosmology, rare decays
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Interest in Neutrino Mass

• So much activity on neutrino mass already.

Why am I interested in this?

Window to (way) high energy scales 
beyond the Standard Model!

• Two ways:
– Go to high energies

– Study rare, tiny effects⇐
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Rare Effects from High-Energies

• Effects of physics beyond the SM as 
effective operators

• Can be classified systematically (Weinberg)
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Unique Role of Neutrino Mass

• Lowest order effectof physics at short distances

• Tiny effect(mν/Eν)2~(0.1eV/GeV)2=10–20!

• Interferometry(i.e., Michaelson-Morley)
– Need coherent source

– Need interference (i.e., large mixing angles)

– Need long baseline

Nature was kind to provide all of them!

• “neutrino interferometry”(a.k.a. neutrino oscillation)a 
unique tool to study physics at very high scales
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Ubiquitous Neutrinos

They must have played some 
important role in the universe!



What we now know
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The Data

• Atmospheric 
– ∆m23

2~2.5×10-3eV2

– sin22θ23~1 

• Solar 
– ∆m12

2~3–12×10-5eV2

– sin22θ12~0.9

• Reactor 
– ∆m12

2~8×10-5eV2

• Accelerator (K2K/MINOS)

• LSND vs Mini-BooNE
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What we learned

• Lepton Flavor is not conserved

• Neutrinos have tiny mass, not very hierarchical

• Neutrinos mix a lot

the first evidence for 

incompleteness of Minimal Standard Model

Very different from quarks
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Typical Theorists’ View ca. 1990

• Solar neutrino solution mustbe small angle 
MSW solution because it’s cute

• Natural scale for ∆m2
23 ~ 10–100 eV2

because it is cosmologically interesting
• Angle θ23 must be ~ Vcb =0.04
• Atmospheric neutrino anomaly must go 

away because it needs a large angle

Wrong!

Wrong!

Wrong!

Wrong!
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The Big Questions

• What is the origin of neutrino mass?

• Did neutrinos play a role in our existence?

• Did neutrinos play a role in forming galaxies?

• Did neutrinos play a role in birth of the universe?

• Are neutrinos telling us something about unification of 
matter and/or forces?

• Will neutrinos give us more surprises?

Big questions ≡ tough questions to answer
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Immediate Questions

• Dirac or Majorana? 

• Absolute mass scale?

• How small is θ13?

• CP Violation?

• Mass hierarchy?

• Is θ23 maximal?
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Extended Standard Model

• Massive Neutrinos ⇒ Minimal SM incomplete
• How exactly do we extend it?
• Abandon either

– Minimality: introduce new unobserved light degrees of freedom 
(right-handed neutrinos)

– Lepton number: abandon distinction between neutrinos and anti-
neutrinos and hence matter and anti-matter

• Diracor Majorananeutrino
• Without knowing which, we don’t know how to extend the 

Standard Model
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0νββ

• The only known practical approach to 
discriminate Majorana vs Dirac neutrinos

0νββ: nn → ppe–e– with no neutrinos
• Matrix element ∝ <mνe>=ΣimνiUei

2

• Current limit |<mνe>| ≤ about 1eV
• m3~(∆m2

23)1/2≈0.05eV looks a promising 
goal

• Good chance to discover it for degenerate 
and inverted spectra <mνe> > 0.01eV

• Not clear if we can see it for the normal 
spectrum, need ~0.001 eV sensitivity

• Majorana, CANDLES, Cuore, GERDA, MOON, 
EXO, XMASS, SuperNEMO, COBRA,  …
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Now that LMA is confirmed...

� ∆m12
2, s12 came out as large it could be (LMA)

• Dream case for neutrino oscillation physics!
� ∆m2

solarwithin reach of long-baseline expts
• Even CP violation may be probed

– neutrino superbeam
– muon-storage ring neutrino factory

• What it would take to see it depends on θ13!

P(νµ → νe) − P(ν µ → ν e) = −16s12c12s13c13
2 s23c23
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θ13

• Two approaches
• Reactor anti-neutrino experiments

– Disappearance of anti-νe

– measures purely sin2 2θ13

– Double-CHOOZ, Daya Bay, RENO, ANGRA, …

• Long-baseline accelerator experiments
– Appearance of νe from νµ
– Combination of θ13, matter effect, CP phase
– MINOS, T2K, NOνA, T2KK, …
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The Big Questions

• What is the origin of neutrino mass?

• Did neutrinos play a role in our existence?

• Did neutrinos play a role in forming galaxies?

• Did neutrinos play a role in birth of the universe?

• Are neutrinos telling us something about 
unification of matter and/or forces?

• Will neutrinos give us more surprises?

Big questions ≡ tough questions to answer



Seesaw
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Seesaw Mechanism

• Why is neutrino mass so small?

• Need right-handed neutrinos to generate 
neutrino mass

ν L νR( )
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ν R
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To obtain m3~(∆m2
atm)1/2, mD~mt, M3~1014GeV

, but νR SM neutral
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Grand Unification

• electromagnetic, weak, and 
strong forces have very 
different strengths

• But their strengths become the 
same at ~2×1016 GeV if 
supersymmetry

• To obtain 

m3~(∆m2
atm)1/2, mD~mt

⇒ M3~1014 GeV!

M3
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Matter and Anti-Matter
Early Universe

1,000,000,001 1,000,000,000

Matter Anti-matter
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Matter and Anti-Matter
Current Universe

The Great Annihilation

1

us

Matter Anti-matter
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Baryogenesis

• What created this tiny excess matter? 
• Necessaryconditions for baryogenesis (Sakharov):

– Baryon number non-conservation
– CP violation

(subtle difference between matter and anti-matter)

– Non-equilibrium
⇒ Γ(∆B>0) > Γ(∆B<0)

• It looks like neutrinos have no role in this…
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Electroweak Anomaly

• Actually, SM converts L
(ν) to B (quarks).
– In Early Universe (T > 

200GeV), W is massless 
and fluctuate in W 
plasma

– Energy levels for left-
handed quarks/leptons
fluctuate correspon-
dingly

∆L=∆Q=∆Q=∆Q=∆B=1 ⇒ ∆(B–L)=0

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.



29

Leptogenesis

• You generate Lepton Asymmetryfirst. (Fukugita, Yanagida)

• Generate L from the direct CP violation in right-handed 
neutrino decay

• L gets converted to B via EW anomaly
⇒ More matter than anti-matter
⇒ We have survived “The Great Annihilation”

• Despite detailed information on neutrino masses, it still 
works (e.g., Bari, Buchmüller, Plümacher)

Γ(N1 → νi H) − Γ(N1 → ν i H) ∝ Im(h1j h1khlk
* hlj

* )
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Origin of Universe

• Maybe an even biggerrole: inflation
• Need a spinless field that 

– slowly rolls down the potential
– oscillates around it minimum
– decays to produce a thermal bath

• The superpartner of right-handed 
neutrino fits the bill

• When it decays, it produces the 
lepton asymmetry at the same time
(HM, Suzuki, Yanagida, Yokoyama)

• Decay products: supersymmetry and 
hence dark matter

Neutrino is mother of the Universe?

~
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QuickTime™ and a
Cinepak decompressor

are needed to see this picture.

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.
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⇐⇐ ⇐



Synergy
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Can we prove it experimentally?

• Short answer: no. We 
can’t access physics at 
>1010 GeV with 
accelerators directly

• But: we will probably 
believeit if the 
following scenario 
happens

Archeological evidences
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A scenario to “establish” seesaw

• We find CP violation in neutrino oscillation
– At least proves that CP is violated in the lepton 

sector

• Ue3 is not too small
– At least makes it plausible that CP asymmetry 

in right-handed neutrino decay is not 
unnaturally suppressed

• But this is not enough
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A scenario to “establish” seesaw

• LHC finds SUSY, ILC establishes SUSY

• no more particles beyond the MSSM at TeV scale

• Gaugino masses unify(two more coincidences)

• Scalar masses unifyfor 1st, 2nd generations (two 
for 10, one for 5*, times two)

⇒ strong hint that there are no additional particles 
beyond the MSSM below MGUT except for gauge 
singlets.
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Gaugino and scalars

• Gaugino masses test unification
itself independent of 
intermediate scales and extra 
complete SU(5) multiplets

• Scalar masses test beta 
functions at all scales, depend 
on the particle content

Kawamura, HM, Yamaguchi
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A scenario to “establish” seesaw

• Next generation experiments 
discover neutrinoless double beta 
decay

• Say, 〈mν〉ee~0.1eV
• There must be new physics below 

Λ~1014GeV that generates the 
Majorana neutrino mass

• But it can also happen with R-parity 
violating SUSY
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A scenario to “establish” seesaw

• It leaves the possibility for R-parity violation
• Consistency between cosmology, dark matter 

detection, and LHC/ILC will remove the concern

ΩM =
0.756(n+1)x f

n+1

g1/2σannMPl
3

3s0

8πH0
2 ≈ α 2 /(TeV)2

σann
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Need “New Physics”Λ<1014GeV

• Now that there must be 
D=5 operator at Λ<a few 
×1014GeV < MGUT, we 
need new particles below 
MGUT

• Given gauge coupling and 
gaugino mass unification, 
they have to come in 
complete SU(5) multiplets
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Possibilities

• L is in 5*, H in 5 of SU(5)
Li

Lj

H

H

15 Needs to be in a symmetric 
combination of two L: 15

Li

H

Lj

H

1 or 24 Need three (at least two) 1 
or 24 to have rank two or 
three neutrino mass matrix
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Scalar masses tell them apart

15+15*3×243×1New particles

18.0220.1517.48(mD
2-mL

2)/M1
2

22.6029.5221.30(mQ
2-mE

2)/M1
2

2.294.681.90(mQ
2-mU

2)/M1
2

Type-IIModified

Type-I

Standard 
seesaw

Λ= 1013GeV

Matt Buckley, HM
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What about Yukawa couplings?

• Yukawa couplings can 
in principle also 
modify the running of 
scalar masses

• We may well have an 
empirical upper limit 
on M by the lack of 
lepton-flavor violation

• Justifies the analysis!
Hisano&Nomura, hep-ph/9810479
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If this works out

• Evidence for SU(5)-like unification hard to ignore
• Only three possible origins of Majorana neutrino 

mass < 1014 GeV consistent with gauge coupling 
and gaugino unification

• Only one consistent with scalar mass unification
• Could well “establish” the standard seesaw 

mechanism this way
• Need collider, dark matter, 0νββ, cosmology, 

LFV, proton decay
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Leptogenesis?

• No new gauge non-singlets below MGUT

• Either
– Baryogenesis due to particles we know at TeV scale, i.e., 

electroweak baryogenesis
– Baryogenesis due to gauge-singlets well above TeV, i.e., 

leptogenesis by νR

• The former can be excluded by colliders & EDM
• The latter gets support from Dark Matter concordance, B-

mode CMB fluctuation that point to “normal” cosmology 
after inflation

• Ultimate: measure asymmetry in background ν’s
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Origin of the Universe

• Right-handed scalar 
neutrino: V=m2φ2

• ns~0.96
• r~0.16
• Need m~1013GeV
• Consistent with 

WMAP+LSS
• Verification possible 

in the near future
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Conclusions

• Revolutions in neutrino physics
• Neutrino mass probesvery high-energy physics
• But how do we know?
• By collection of experiments: collider, dark 

matter, 0νββ, cosmology, LFV, proton decay
• We could well find convincing enough 

experimental evidence for seesaw mechanism
• May even learn something about our existence, the 

birth of the universe itself
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The Iνvisibles



Osaka, June 12, 2007 48



Osaka, June 12, 2007 49

High precision needed

15+15*3×243×1New particles

17.6217.7717.48(mD
2-mL

2)/M1
2

21.7022.5821.30(mQ
2-mE

2)/M1
2

2.042.411.90(mQ
2-mU

2)/M1
2

Type-IIModified

Type-I

Standard 
seesaw

Λ= 1014GeV

Matt Buckley, HM
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Can we do this?

• CMS: in some cases, squark masses can be 
measured as ∆m ~3 GeV, if LSP mass provided by 
ILC, with jet energy scale suspect.  No distinction 
between uR and dR (Chiorboli)

• ILC measures gaugino mass and slepton mass at 
permille levels: negligible errors (HM)

• squark mass from kinematic endpoints in jet 
energies: ∆m~a few GeV(Feng-Finnell)

• Can also measure squark mass from the threshold: 
∆m~2-4 GeV(Blair)

• 1% measurement of m2 Not inconceivable
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Threshold scan @ ILC

100 fb-1

Grahame Blair
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Comments

• Threshold behavior for squark-pair 
production has not been calculated with 
QCD effects (à la ttbar threshold)

• Mass differences presumably better 
measured
– Jet energy scale uncertainties cancel
– Difference in end points
– But flavor tagging a challenge
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Scalar Mass Unification

• Because the scalar masses also appear to 
unify, their running constrain gauge non-
singlet particle content below the GUT 
scale

• Need to see the level of mismatch generated 
by 3×24 (modified Type I), 15+15* (Type 
II), compared to 3×1 (Standard seesaw) that 
does not modify the scalar mass unification
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Needed accuracy (3σ)

3×24
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Needed accuracy (3σ)

15+15*
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Needed accuracy (3σ)

15+15*
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Alignment of the Planets
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The Question

• The seesaw mechanism has been the 
dominant paradigm for the origin of tiny 
neutrino mass

• Physics close to the GUT scale
• How do we know if it is true?  Is there a 

way to test it experimentally?
• Short answer: No
• However, we can be convinced of it
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Neutrinos do oscillate!

≈Proper time τ


