NEMO 3 and SuperNEMO

PLAN

- Short quick tour of NEMO-3 detector
- Overview of $2\nu\beta\beta$ results
 - (100Mo, 82Se, 116Cd, 150Nd, 96Zr 48Ca)
 - Single electron spectrum (¹⁰⁰Mo)
 - Decay to the excited 0^+ (¹⁰⁰Mo)
- Phase I \rightarrow Phase II (Low radon) and $0\nu\beta\beta$ results
- SuperNEMO

Philosophy of the NEMO-3 experiment

The Location of the NEMO3

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18cm) Neutron shield:

> 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron)

 \Rightarrow Able to identify e⁻, e⁺, γ and α

ββ decay isotopes in NEMO-3 detector

Sources preparation

How detect signals and tag the background ?

Identification of e, γ , α

Tracking (Identification e/others)

Delayed (<700 $\mu s)$ α track

Calorimeter $\epsilon(\gamma) \sim 50\%$ (@0.5MeV)

Possible for tagging ey, eyy, eyyy, ...

> Time of flight $\sigma_t \sim 300 \text{ps}(@1\text{MeV})$

External Background rejection

➤ Magnetic Field (Identification e⁻/e⁺)

3~5% e⁻/e⁺ confusion @ 1~7MeV

Study of Background Process

 e^{214} Bi Tagged by e(γ)α (~164µs)

(²¹⁴Bi->²¹⁴Po->²¹⁰Pb)

• 208 Tl ey, eyy, eyyy, with γ (2.6MeV)

or Taggd by $e(\gamma) \alpha$ (~300ns)

(²¹²Bi->²¹²Po->²⁰⁸Pb)

Neutron Crossing e (4~8MeV)

Double Compton Compton + Möller

Background events observed by NEMO-3...

Electron crossing > 4 MeV Neutron capture

Electron + N γ 's ²⁰⁸Tl (E γ = 2.6 MeV)

Electron + α delay track (164 μ s) ²¹⁴Bi \rightarrow ²¹⁴Po \rightarrow ²¹⁰Pb

ββ events selection in NEMO-3

Typical ββ2ν event observed from ¹⁰⁰Mo

¹⁰⁰Mo 2β2ν preliminary results

(Data Feb. 2003 – Dec. 2004) \rightarrow (Phase I)

No Significant discrepancy $\rightarrow 2\nu\beta\beta$ is really standard process!

$2\beta 2\nu$ preliminary results for other nuclei

Background subtracted

⁴⁸Ca analysis 1st preliminary result

1.07y

7g of ⁴⁸Ca enough radio pure after chemistry ²¹⁴Bi, ²⁰⁸Tl but 30m Bq of ⁹⁰Sr! to remove Möller scattering pure beta emitter (⁹⁰Y)

(1) E_{SUM} >2.MeV or (2) Eth > 0.7 MeV cos θ < 0 back to back

$T_{1/2} = [3.9 \pm 0.7(stat) \pm 0.6(syst)] \cdot 10^{19} y$

Single electron spectum $2\nu\beta\beta$ (¹⁰⁰Mo)

SSD simulation

Esingle (keV)

Decay to the excited 0^+ (¹⁰⁰Mo $2\nu\beta\beta$)

Decay to the excited 0⁺ state (1130keV) of ¹⁰⁰Ru $T_{1/2} = 5.7^{+1.3}_{-0.9}$ (stat) ± 0.8 (syst) $\times 10^{20}$ y *Nuclear Physics A781 (2006) 209-226.*

ββ0ν Analysis: Background Measurement

Radon in the NEMO-3 gas of the wire chamber

Due to a tiny diffusion of the radon of the laboratory inside the detector A(Radon) in the lab ~15 Bq/m³

~ 1 $\beta\beta$ 0v-like events/year/kg with 2.8 < E_1 + E_2 < 3.2 MeV

Radon is the dominant background at Phase 1

for $\beta\beta0\nu$ search in NEMO-3 !!!

Free-Radon Air factory

Starts running Oct. 4th 2004 in Modane Underground Lab.

1 ton charcoal @ -50°C, 7 bars

Activity: A(²²²Rn) < 15 mBq/m³ !!! Flux: 125 m³/h a factor 1000

NEMO Tent for Free-Radon air Installation

May 2004 : Tent surrounding the detector Phase I \rightarrow Phase II

Preliminary results with ¹⁰⁰Mo (7 kg) $0\nu\beta\beta$

Phases I + II (preliminary) expected in 2009

NEMO-3 Expected sensitivity without radon

Background

External Background: negligible

Internal Background: 208 TI : $^{60}\mu Bq/kg$ for 100 Mo $^{300}\mu Bq/kg$ for 82 Se $^{214}Bi : < 300 \mu Bq/kg$ ~ 0.1 count kg⁻¹ y ⁻¹ with 2.8<E₁+E₂<3.2 MeV

ββ2ν¹⁰⁰Mo: $T_{1/2} = 7.11 \ 10^{18} \text{ y}$ ~ 0.3 count kg⁻¹ y ⁻¹ with 2.8<E₁+E₂<3.2 MeV

Nuclear Matrice Elements Ref: Simkovic (1999), Stoica (2001), Suhonen (1998, 2003), Rodin (2005), Caurier (1996)

Present status: 2v decay(NEMO3)

Nuclei	Enriched Source in NEMO 3	T1/2, y(NEMO 3)(partially preliminary)
⁴⁸ Ca (4.271 MeV) (0.187%)	7.0 g	3.9(+/-0.7+/-0.6)·10 ¹⁹
⁷⁶ Ge (2.040 MeV) (7.8%)		
⁸² Se (2.995 MeV) (9.2%)	932 g	9.6(+/-0.3+/-1.0)·10 ¹⁹
⁹⁶ Zr (3.350 MeV) (2.8%)	9.4 g	2.0(+/-0.3+/-0.2)·10 ¹⁹
¹⁰⁰ Mo (3.034 MeV) (9.6%)	6914 g	7.11(+/-0.02+/-0.54)·10 ¹⁸
¹¹⁶ Cd (2.802 MeV) (7.5%)	405 g	2.8(+/-0.1+/-0.3)·10 ¹⁹
¹³⁰ Te (2.528 MeV) (33.8%)	454 g	Please wait
¹³⁶ Xe (2.479 MeV) (8.9%)		
¹⁵⁰ Nd (3.367 MeV) (5.6%)	37 g	9.7(+/-0.7+/-1.0)·10 ¹⁸

¹⁰⁰Mo to the excited 0⁺ (1.130 keV) $T_{1/2} = 5.7(+1.3-0.9 + -0.8) \cdot 10^{20} y$

From NEMO3 to SuperNEMO

$$T_{1/2}(\beta\beta0\nu) > \ln 2 \times \frac{N_{avo}}{A} \times \frac{M \times \varepsilon \times T_{obs}}{N_{exclu}}$$

NEMO-3		SuperNEMO
$\frac{100}{100}M0}$ $T_{1/2}(\beta\beta 2\nu) = 7.\ 10^{18} y$	Choice of isotope	150 Nd or 82 Se T _{1/2} ($\beta\beta 2\nu$) = 10 ²⁰ y
7 kg	Isotope mass M	100 - 200 kg
$\varepsilon(\beta\beta0\nu) = 8 \%$	Efficiency E	$\epsilon(\beta\beta0\nu) \sim 30 \%$
$^{214}\text{Bi} < 300 \ \mu\text{Bq/kg}$ $^{208}\text{Tl} < 20 \ \mu\text{Bq/kg}$ $(^{208}\text{Tl}, \ ^{214}\text{Bi}) \sim 1 \ \text{evt}/ \ 7 \ \text{kg} \ /\text{y}$	$N_{exclu} = f(BKG)$ Internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the $\beta\beta$ foil	$\label{eq:10} \begin{array}{l} {}^{214}\text{Bi} < 10 \ \mu\text{Bq/kg} \\ {}^{208}\text{Tl} < 2 \ \mu\text{Bq/kg} \\ ({}^{208}\text{Tl}, \ {}^{214}\text{Bi}) \sim 1 \ evt/ \ 100 \ kg \ /y \end{array}$
$\beta\beta 2\nu \sim 2 \text{ evts} / 7 \text{ kg} / y$	ββ(2ν)	$\beta\beta 2\nu \sim 1 \text{ evt} / 100 \text{ kg/ y}$
FWHM(calo)=8% @3MeV	IF	FWHM(calo)=4% @3MeV
$T_{1/2}(\beta\beta0\nu) > 2.\ 10^{24} y$ $< m_{\nu} > < 0.3 - 1.3 \text{ eV}$	SENSITIVITY	$T_{1/2}(\beta\beta0\nu) > 10^{26} y$ $< m_{\nu} > < 50 meV$
1) ββ	source production	2) Energy resolution

Main R&D tasks: 3) Radioprurity

4) Tracking

SuperNEMO Collaboration

~ 60 physicists, 12 countries, 27 laboratories

Conceptual SuperNEMO design

1 module:

Source (40 mg/cm²) 4 x 3 m² Tracking : drift chamber ~3000 cells in Geiger mode

Calorimeter: scintillators + PM ~1 000 PM if scint. blocks ~ 100 PM if scint. bars

SuperNEMO Status

- -Large Scale R&D funded by France, UK and Spain, (Similar proposal in Japan with MOON team See Nomachi's talk)
- Possibility to produce 100 kg of ¹⁵⁰Nd with laser enrichment method under study
- Test of tracker prototype and design of automatic winring robot
- Prototype of BiPo detector to measure contaminations in thin source foils with 1uBq/kg sensitivity running in Canfranc underground laboratory (Spain)

- 7% FWHM at 1 MeV reached for individual plastic and liquid scintillator samples.
 R&D towards bigger block sizes and large production scale underway
- Simulations in progress

Tracking prototype in UK

R&D Scintillators

- **Plastic scintillators** (collaboration with Karkhov and Dubna = PICS)
 - Improvement on polystyrene production
 - Development of Polyvinylxylene
 - Geometry and wrapping (chemical treatment Karkhov)
 - Tests in CENBG of different production and size of scintillators

with an e- spectrometer

Scintillator blocks 6 x 6 x 2 cm³ PMT XP5312B (Photonis)

• Liquid scintillators

- Advantages: high light yield + very good uniformity and transparency
- Challenge: mechanical contraints particularly for the entrance window (electron detection) 09/09/26 17.0

G

Liq. Scintillator 75 x 75 x 20 mm³ + Light guide + PMT 3"

FWHM @ 1 MeV = 7.3 %

• Photomultipliers

- Hamamatsu and Photonis
- Large size and Large Quantum Efficiency: QE ~ 45 % for 3" PMTs

R&D - Sources

Enrichment

Goal: To be able to produce 100 kg of ⁸²Se

- Facilities exist in Russia
 - 30 kg of ⁷⁶Ge for GERDA
 - 100 kg of ⁸²Se possible in 3 years
 - Distillation of ⁸²Se (for purification) possible Distillation of ¹¹⁶Cd tested with NEMO3
 - 3.5 kg of ⁸²Se funded by ILIAS^(*) (2005-2007)

Purification

<u>Goal:</u>²⁰⁸Tl < 2 μBq/kg ²¹⁴Bi < 10 μBq/kg

Collaboration with INL
 (chemical method)
 - 600 g of ^{nat}Se done

-1 kg ⁸²Se done Chemical purification at INL (US) All funded by ILIAS^(*)

Collaboration with Kurchatov and Nijni-Novgorod Institutes (distillation)

-2 kg of ^{nat}Se done

Source foils production

Goal: 250 m² of ⁸²Se foils of 40 mg/cm²

NEMO3: ITEP (Moscow) powder + glue (60mg/cm²) =>Extrapolation 100 kg possible if very clean conditions Or new technique in test in LAL

(Integrated Large Infrastructures for Astroparticle Science) : european network Laboratoires souterrains - Ondes gravitationnelles - Matière noire - Double bêta

R&D - Measurement of materials radiopuity

<u>Ge detectors</u>

<u>today</u>: NEMO HPGe **400 cm³ 60 μBq/kg ²⁰⁸Tl** and **200 μBq/kg ²¹⁴Bi** (1 month, 1 kg)

Goal: Improve the sensitivity ...

- \Rightarrow Development of 800 cm³ HPGe (Canberra-Eurysis)
 - + Shields improvement
 - + New ultra-pur cryostat
- \Rightarrow New planar Ge detector (σ =0.5 keV@40keV)

Radon detectors

Today : 1 mBq/m³ Volume: 701

Goal: 0,1 mBq/m³

Development V=700 l (Japan)
 + Improvement of diodes radiopurety

Other way of detection....(liquid scintillators) ?

BiPo DETECTOR

To measure the purity in ²⁰⁸Tl and ²¹⁴Bi of the $\beta\beta$ source foils before the installation in SuperNEMO Goal: To measure 5 kg of foils (12 m², 40 mg/cm²) in 1 month with a sensitivity of:

 $^{208}Tl < 2~\mu Bq/kg~$ and $^{214}Bi < 10~\mu Bq/kg$

other possible SuperNEMO design

MOON module with 20kg of source

See Nomachi's (MOON) talk

SuperNEMO schedule summary

Wer	need 150	Nd fo	or the β	30v ex	periment
		$\frac{1}{T_{1/2}^{0v}} =$	$G_{0\nu} M_{0\nu}^2 < m_{0\nu}$	v> ²	SuperNEMO SNO++
leatona		C (1)	$T_{1/2}(0v)$ with n	n _v =50meV ORPA	DCBA etc.

					QRPA: Feasller Rodin Simkovic
⁴⁸ Ca	4.271	2.44	9.2 10 ²⁶	2.9 10 ²⁷	Vogel 2005
⁷⁶ Ge	2.040	0.24	7 10 ²⁷	2.4 10 ²⁷	
⁸² Se	2.995	1.08	9.6 10 ²⁶	7.4 10 ²⁶	
⁹⁶ Zr	3.350	2.24		1.5 10 ²⁸	$\mathbf{Q}_{\boldsymbol{\beta}\boldsymbol{\beta}}$ ¹⁵⁰ Nd
¹⁰⁰ Mo	3.034	1.75		1.4 10 ²⁷	Beyond the γ of
¹¹⁶ Cd	2.802	1.89		10 ²⁷	2.614 MeV(²⁰⁸ TI)
¹³⁰ Te	2.528	1.70	3.6 10 ²⁶	10 ²⁷	Beyond ²¹⁴ Bi Q_{β}
¹³⁶ Xe	2.479	1.81	5.2 10 ²⁶	2-5 10 ²⁷	(3.2 MeV)
¹⁵⁰ Nd	3.367	8.00		1.2 10 ²⁶	

-Possibility to produce 100 kg of ¹⁵⁰Nd with laser enrichment method under study Continue Comments on Enrichment of ¹⁵⁰Nd.