We need ¹⁵⁰ Nd for the $\beta\beta0\nu$ experiment					
	$\frac{1}{T_{1/2}^{0\nu}} = \mathbf{G}_{0\nu} \mathbf{M}_{0\nu}^2 \langle \mathbf{m}_{\nu} \rangle^2$				SuperNEMO SNO++
Isotope	$Q_{\beta\beta}$ (MeV)	G _{0v} (y⁻¹)	T _{1/2} (0v) with r Shell Model	n _v =50meV QRPA	DCBA etc. Shell Model: Caurier et al. QRPA: Feasller Rodin Simkovic Vogel 2005
⁴⁸ Ca	4.271	2.44	9.2 10 ²⁶	2.9 10 ²⁷	
⁷⁶ Ge	2.040	0.24	7 10 ²⁷	2.4 10 ²⁷	
⁸² Se	2.995	1.08	9.6 10 ²⁶	7.4 10 ²⁶	
⁹⁶ Zr	3.350	2.24		1.5 10 ²⁸	$\mathbf{Q}_{\boldsymbol{\beta}\boldsymbol{\beta}}$ ¹⁵⁰ Nd
¹⁰⁰ Mo	3.034	1.75		1.4 10 ²⁷	Beyond the γ of 2.614 MeV(²⁰⁸ Tl) Beyond ²¹⁴ Bi Q _{β}
¹¹⁶ Cd	2.802	1.89		10 ²⁷	
¹³⁰ Te	2.528	1.70	3.6 10 ²⁶	10 ²⁷	

-Possibility to produce ¹⁵⁰Nd with laser enrichment method (use MENPHIS) under study. S. Jullian (LAL, Orsay, Organizer of the Project), here only presentation by H.Ohsumi

5.2 10²⁶

2-5 10²⁷

1.2 10²⁶

¹³⁶Xe

¹⁵⁰Nd

2.479

3.367

1.81

8.00

(3.2 MeV)

¹⁵⁰Nd production: The Laser Method (AVLIS)

235 U⁺

235 U**

238[]

L2

AVLIS: Atomic Vapor Laser Isotope Separation

Selective photoionization based on : isotope shifts in the atomic absorption optical spectra U + 3 selective photons $\rightarrow {}^{235}U^+ + e^-$

2000 - 2003 Program: MENPHIS Facility

Evaporator

Yag laser

Dye laser chain

Copper vapor lase

Design : 2001 Building : 2002 1st test : early 2003 1st full scale exp. : june 2003

- Production of 200 kg of enriched U at 2.5 % in few days
- Results in agreement with simulation expectation

MENPHIS simulation shows that enrichment of ¹⁵⁰Nd is doable (ton scale), ~ 100 kg in few weeks !!!

⁴⁸Ca enrichment is theoriticaly doable. Studies must be done

Expression of Interest of SuperNEMO, SNO++ and Japan to keep MENPHYS for Nd enrichment

Menphis experiment technological results LASER:

- \geq 600 hours for each CVL
- 170 hours for dye laser at full power

SEPARATOR :

- <u>Several</u> hundred hours at the operational temperature and extractor voltage without significant failures nor material damages
- Long time evaporation

MENPHIS (2000-2003 Program): CONCLUSIONS

> Many countries have demonstrated with AVLIS a g/h production of low enriched uranium

> But only a few have been able to raise the production up to a few kg/hour (USA, Japon, France)

To get such a production level : 20 years : high power electron gun high laser power

Nd has been enriched in ¹⁵⁰Nd at 60% with a production yield of 40mg/h (Kurchatov Institute QE 35(10), 879 (2005)