

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

(on behalf of the Daya Bay Collaboration)

International Workshop on "Double Beta Decay and Neutrinos" Osaka, Japan, June 11-13, 2007

Outline

- Physics case for a precise θ_{13} measurement
- The proposed Daya Bay neutrino oscillation experiment
- Schedule and expected sensitivity of the Daya Bay experiment

What we have learned from neutrino oscillation experiments

1) Neutrinos are massive

$$\Delta m_{21}^2 = m_2^2 - m_1^2 = (7.9 \pm 0.7) \times 10^{-5} \text{ ev}^2 \quad (90\% \text{ c.l.})$$
$$|\Delta m_{32}^2| = |m_3^2 - m_2^2| = (2.4 \pm 0.6) \times 10^{-3} \text{ ev}^2 \quad (90\% \text{ c.l.})$$

2) Neutrinos do mix with each other

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$(c_{ij} = \cos \theta_{ij}, \quad s_{ij} = \sin \theta_{ij})$$

$$\theta_{12} \quad 34^{\circ}, \quad \theta_{23} \quad 45^{\circ}, \quad \theta_{13} \leq 13^{\circ} \text{ for the lepton MNSP Matrix}$$

$$\theta_{12} \quad 13^{\circ}, \quad \theta_{23} \quad 2.2^{\circ}, \quad \theta_{13} \quad 0.22^{\circ} \text{ for the quark CKM Matrix}$$
3) Neutrino masses and mixings have provided clear evidence for physics beyond the Standard Model

3

What we do not know about the neutrinos

- Dirac or Majorana neutrinos?
- Mass hierachy and values of the masses?
- Existence of sterile neutrinos?
- Value of the θ_{13} mixing angle?
- Values of CP-violation phases?
- Origins of the neutrino masses?
- Other unknown unknowns

What we know and do not know about the neutrinos

- What is the v_e fraction of v_3 ? (proportional to $\sin^2\theta_{13}$)
- Contributions from the CP-phase δ to the flavor compositions of neutrino mass eigenstates depend on $\sin^2\theta_{13}$)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \nu_{3} \end{pmatrix}$$

Why measuring θ_{13} ?

A recent tabulation of predictions of 63 neutrino mass models on $sin^2\theta_{13}$

- Models based on the Grand Unified Theories in general give relatively large θ_{13}
- Models based on leptonic symmetries predict small θ_{13}

A measurement of $\sin^2 2\theta_{13}$ at the sensitivity level of 0.01 can rule out at least half of the models!

Why measuring θ_{13} ?

A recent tabulation of predictions of 63 neutrino mass models on $sin^2\theta_{13}$

(hep-ph/0608137)

7

A measurement of $\sin^2 2\theta_{13}$ AND the mass hierarchy can rule out even more models!

Why measuring θ_{13} ? Leptonic CP violation $P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}$ $\sin \delta \sin \left(\frac{\Delta m_{12}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{13}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{23}^{2}}{4E}L\right)$

If $sin^2 2\theta_{13} > 0.02-0.03$, then NOvA+T2K will have good coverage on CP δ .

Size of $sin^2 2\theta_{13}$ sets the scale for future leptonic CP violation studies

Current Knowledge of θ_{13}

Direct search

Global fit

Some Methods For Determining θ_{13}

Method 1: Accelerator Experiments

$$P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) + \dots$$

- · $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment
- need other mixing parameters to extract θ_{13}
- baseline O(100-1000 km), matter effects present
- expensive

Method 2: Reactor Experiments

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- * $\overline{\nu}_e \rightarrow X$ disappearance experiment
- baseline O(1 km), no matter effect, no ambiguity
- relatively cheap

Detecting v: Inverse β Decay

• The reaction is the inverse β -decay in 0.1% Gd-doped liquid scintillator: $\overline{v}_e + p \rightarrow e^+ + n$ (prompt)

$$\begin{array}{c|c} 0.3b & \rightarrow +p \rightarrow D + \gamma(2.2 \text{ MeV}) & (delayed) \\ \hline 50,000b & \rightarrow +Gd \rightarrow Gd^{\star} \\ & & \rightarrow Gd + \gamma's(8 \text{ MeV}) & (delayed) \end{array}$$

- Time- and energy-tagged signal is a good tool to suppress background events.
- Energy of $\overline{v_e}$ is given by:

$$E_{\bar{v}} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \text{ MeV}$$

10-40 keV

Measuring θ_{13} with Reactor Neutrinos

Search for θ_{13} in new oscillation experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

Results from Chooz

5-ton 0.1% Gd-loaded liquid scintillator to detect $v_e + p \rightarrow e^+ + n$

Rate:

~5 evts/day/ton (full power) including 0.2-0.4 bkg/day/ton

Systematic uncertainties

parameter	relative uncertainty (%)
reaction cross section	1.9
number of protons	0.8
detection efficiency	1.5
reactor power	0.7
energy released per fission	0.6
combined	2.7

How to Reach a Precision of 0.01 in $\sin^2 2\theta_{13}$?

• Increase statistics:

- Use more powerful nuclear reactors
- Utilize larger target mass, hence larger detectors
- Suppress background:
 - Go deeper underground to gain overburden for reducing cosmogenic background

• Reduce systematic uncertainties:

- Reactor-related:
 - Optimize baseline for best sensitivity and smaller reactor-related errors
 - Near and far detectors to minimize reactor-related errors
- Detector-related:
 - Use "Identical" pairs of detectors to do *relative* measurement
 - Comprehensive program in calibration/monitoring of detectors
 - Interchange near and far detectors (optional)

World of Proposed Reactor Neutrino Experiments

Location of Daya Bay

The Daya Bay Nuclear Power Complex

- 12th most powerful in the world $(11.6 GW_{th})$
- Fifth most powerful by 2011 (17.4 GW_{th})

• Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays

Daya Bay Collaboration

Political Map of the World, June 1999

Europe (3) (9)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

North America (14)(50) BNL, Caltech, George Mason Univ., LBNL, Iowa state Univ. Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Houston, Univ. of Wisconsin, Virginia Tech., Univ. of Illinois-Urbana-Champaign

Asia (15) (86).

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Hong Kong Univ., Chinese Hong Kong Univ., National Taiwan Univ., National Chiao Tung Univ., National United Univ.

~145 collaborators

Conceptual design of the tunnel and the Site investigation including bore holes completed

Tunnel construction

- The tunnel length is about 3000m
- Local railway construction company has a lot of experience (similar cross section)
- Cost estimate by professionals, ~ 3K \$/m
- Construction time is ~ 15-24 months
- A similar tunnel on site as a reference

Antineutrino Detectors

- Three-zone cylindrical detector design
 - Target zone, gamma catcher zone
 (liquid scintillator), buffer zone (mineral oil)
 - Gamma catcher detects gamma rays that leak out
- 0.1% Gd-loaded liquid scintillator as target material
 - Short capture time and high released energy from capture, good for suppressing background
- Eight 'identical' detector modules, each with 20 ton target mass
 - 'Identical' modules help to reduce detector-related systematic uncertainties
 - Modules can cross check the performance of each other when they are brought to the same location

BNL Gd-LS Optical Attenuation: Stable So Far ~700 days

- Gd-carboxylate in PC-based LS stable for ~2 years.
- Attenuation Length >15m (for abs < 0.003).
- Promising data for Linear Alkyl Benzene, LAB (LAB use suggested by SNO+ experiment).

Event Rates and Signal

Antineutrino Interaction Rates (events/day per 20 ton module)

Daya Bay near site 960 Ling Ao near site ~760 Far site 90

Prompt Energy Signal

Delayed Energy Signal

Statistics comparable to single detector in far hall

Detector Prototype at IHEP

- 0.5 ton prototype (currently unloaded liquid scintillator)
- 45 8" EMI 9350 PMTs: 14% effective photocathode coverage with top/bottom reflectors

prototype detector at IHEP

 ~240 photoelectron per MeV : 9%/√E(MeV)

Background Sources

1. Natural Radioactivity: PMT glass, steel, rock, radon in the air, etc

2. Slow and fast neutrons produced in rock & shield by cosmic muons

3. Muon-induced cosmogenic isotopes: ⁸He/⁹Li which can β-n decay

- Cross section measured at CERN (Hagner et. al.)
- Can be measured in-situ, even for near detectors with muon rate ~ 10 Hz

Cosmic-ray Muon

- Use a modified Geiser parametrization for cosmic-ray flux at surface
- Apply MUSIC and mountain profile to estimate muon intensity & energy

Muon System

1.

Water Shield

- Pool around the central detectors 2.5m water in all directions.
- Side, bottom & AD surfaces are reflective (Tyvek or equivalent)
- Outer shield is optically separated 1m of water abutting sides and bottom of pool
 - PMT coverage $\sim 1/6m^2$ on bottom and on two surfaces of side sections
- Inner shield has ≥1.5m water buffer for AD's in all directions but up, there the shield is 2.5m thick
 - 8" PMTs 1 per $4m^2$ along sides and bottom 0.8% coverage

Far Hall

Muon System Active Components

- Inner water shield
 - 415 8" PMTs
- Outer water shield
 - 548 8" PMTs
- RPCs
 - -756 2m \times 2m chambers in 189 modules
 - 6048 readout strips

Summary of Systematic Uncertainties

sources	Uncertainty
Reactors	0.087% (4 cores)
	0.13% (6 cores)
Detector	0.38% (baseline)
(per module)	0.18% (goal)
Backgrounds	0.32% (Daya Bay near)
	0.22% (Ling Ao near)
	0.22% (far)
Signal statistics	0.2%

Sensitivity of Sin²20₁₃

Daya Bay: Status and Plan

•	Passed DOE scientific review	Oct 06
•	Passed US CD-1 review	Apr 07
•	Passed final nuclear safety review in China	Apr 07
•	Began to receive committed project funding for 3 years	
	from Chinese agencies	Apr 07
•	Start civil construction	Jun 07
•	Anticipate US CD-2/3a review	Oct 07
•	Start data taking with 2 detectors at Daya Bay near hall	May 09
•	Begin data taking with 8 detectors in final configuration	Apr 10

Daya Bay Conceptual Design Report (hep-ex/0701029)