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Outline

13 Physics case for a precise  measurement

 The proposed Daya Bay neutrino oscillation

   experiment

 Schedule and expected sensitivity of the

   Daya Bay experiment 
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What we have learned from neutrino 
oscillation experiments
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What we do not know about the neutrinos 

• Dirac or Majorana neutrinos?

• Mass hierachy and values of the masses?

• Existence of sterile neutrinos?

• Value of the θ13 mixing angle?

• Values of CP-violation phases?

• Origins of the neutrino masses?

• Other unknown unknowns …..
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What we know and do not know about 
the neutrinos
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• What is the νe fraction of ν3? 
(proportional to sin2θ13)

• Contributions from the CP-phase 
δ to the flavor compositions of 
neutrino mass eigenstates depend 
on sin2θ13) 
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Why measuring θ13?

A measurement of sin22θ13 at the sensitivity level of 
0.01 can rule out at least half of the models!

• Models based on the 
Grand Unified 
Theories in general 
give relatively large 
θ13

• Models based on 
leptonic symmetries 
predict small θ13

A recent tabulation of predictions of 63 neutrino mass models on sin2θ13

(hep-ph/0608137)
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Why measuring θ13?

A measurement of sin22θ13 AND the mass 
hierarchy can rule out even more models!

A recent tabulation of predictions of 63 neutrino mass models on sin2θ13

(hep-ph/0608137)
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Why measuring θ13?
Leptonic CP violation 
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If sin22θ13 > 0.02-0.03, then NOvA+T2K will 
have good coverage on CP δ. 

Size of sin22θ13 sets the scale for future 
leptonic CP violation studies
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Current Knowledge of θ13

Direct search

At ∆m2
31 = 2.5 × 10−3 eV2,

sin22θ13 < 0.17

allowed region

Fogli etal., hep-ph/0506083

Global fit

sin22θθθθ13 < 0.11 (90% CL) 

Best fit value of ∆m2
32 = 2.4 × 10−3 eV2

sin22θθθθ13 = 0.04
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Method 1: Accelerator Experiments

Method 2: Reactor Experiments
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• νe → X disappearance experiment
• baseline O(1 km), no matter effect, no ambiguity 
• relatively cheap

• νµ → νe appearance experiment
• need other mixing parameters to extract θ13
• baseline O(100-1000 km), matter effects present
• expensive

Some Methods For Determiningθ13
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Detectingν :  Inverse β Decay

νe + p → e+ + n (prompt)

→ + p → D + γ(2.2 MeV)    (delayed)

→ + Gd → Gd*

→ Gd + γ’s(8 MeV)  (delayed)

• Time- and energy-tagged signal is a good
tool to suppress background events.

• Energy of νe is given by:

Eν ≈ Te+ + Tn + (mn - mp) + m e+ ≈ Te+ + 1.8 MeV
10-40 keV

• The reaction is the inverse ββββ-decay in 0.1% Gd-doped liquid 
scintillator:

Eν (MeV)
2 3 4 5 6 7 8 9 10

A
rb

itr
ar

y

Flux Cro
ss 

Se
cti

on

Observable ν Spectrum

From Bemporad, Gratta and Vogel

0.3b

50,000b



12

Measuring θ13 with Reactor Neutrinos
Search for θ13 in new oscillation experiment

~1-1.8 km

> 0.1 km
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Results from Chooz

5-ton 0.1% Gd-loaded liquid scintillator
to detect νe + p → e+ + n

L = 1.05 km

D = 300 mwe

P = 8.4 GWth

Rate:
~5 evts/day/ton (full power)
including 0.2-0.4 bkg/day/ton

~3000 νe
candidates
(included 10% bkg) in
335 days

Systematic uncertainties
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• Increase statistics:
– Use more powerful nuclear reactors

– Utilize larger target mass, hence larger detectors

• Suppress background:
– Go deeper underground to gain overburden for reducing cosmogenic

background

• Reduce systematic uncertainties:
– Reactor-related:

• Optimize baseline for best sensitivity and smaller reactor-related errors

• Near and far detectors to minimize reactor-related errors
– Detector-related:

• Use “Identical” pairs of detectors to do relative measurement

• Comprehensive program in calibration/monitoring of detectors

• Interchange near and far detectors (optional)

How to Reach a Precision of 0.01 in sin22θ13?
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World of Proposed Reactor Neutrino Experiments

Angra, Brazil

Diablo Canyon, USA

Braidwood, USA
Chooz, France Krasnoyasrk, Russia

Kashiwazaki, Japan

RENO, Korea

Daya Bay, China
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Location of Daya Bay
• 45 km from
Shenzhen

• 55 km from
Hong Kong
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Ling Ao II NPP:
2 ×××× 2.9 GWth

Ready by 2010-2011

Ling Ao NPP:
2 ×××× 2.9 GWth

Daya Bay NPP:
2 ×××× 2.9 GWth

1 GWth generates 2 × 1020 νe per 
sec

The Daya Bay Nuclear Power Complex
• 12th most powerful in the world 
(11.6 GWth)
• Fifth most powerful by 2011 (17.4 
GWth)
• Adjacent to mountain, easy to 
construct tunnels to reach 
underground labs with sufficient 
overburden to suppress cosmic rays
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Daya Bay
NPP

Ling Ao
NPP

Ling Ao-ll NPP
(under const.)

Empty detectors: moved to underground 
halls through access tunnel.
Filled detectors: transported between 
underground halls via horizontal tunnels.

Total length: ~3100 m

295 m

8
1
0
 m

465 
m

9
0
0
 m

Daya Bay Near
363 m from Daya Bay
Overburden: 98 m

Ling Ao Near
~500 m from Ling Ao
Overburden: 112 m

Far site
1615 m from Ling Ao
1985 m from Daya
Overburden: 350 m

entrance

Filling hall

Mid site
873 m from Ling Ao
1156 m from Daya
Overburden: 208 m

Construction
tunnel
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Conceptual design of the tunnel and the Site 
investigation including bore holes completed
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Tunnel construction
• The tunnel length is about 3000m
• Local railway construction company has a lot of experience 

(similar cross section)
• Cost estimate by professionals, ~ 3K $/m
• Construction time is ~ 15-24  months
• A similar tunnel on site as a reference
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Antineutrino Detectors
• Three-zone cylindrical detector design

– Target zone, gamma catcher zone 
(liquid scintillator), buffer zone (mineral oil)

– Gamma catcher detects gamma rays that leak out

• 0.1% Gd-loaded liquid scintillator as 
target material
– Short capture time and high released energy 

from capture, good for suppressing background 

• Eight ‘identical’ detector modules, each with 20 ton
target mass
– ‘Identical’ modules help to reduce detector-related 

systematic uncertainties
– Modules can cross check the performance of each other 

when they are brought to the same location  
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BNL Gd-LS Optical Attenuation: Stable So Far ~700 days

- Gd-carboxylate in PC-based LS stable for ~2 years. 
- Attenuation Length >15m (for abs < 0.003).

- Promising data for Linear Alkyl Benzene, LAB

(LAB use suggested by SNO+ experiment).
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Detector Prototype at IHEP

• 0.5 ton prototype
(currently unloaded liquid 
scintillator)

• 45 8” EMI 9350  PMTs:
14% effective photocathode 
coverage with top/bottom 
reflectors

• ~240 photoelectron
per MeV : 
9%/√E(MeV)

prototype detector at IHEP
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Background Sources
1. Natural Radioactivity: PMT glass, steel, rock, 
radon in the air, etc

2. Slow and fast neutrons produced in rock & 
shield by cosmic muons

3. Muon-induced cosmogenic isotopes: 8He/9Li 
which can ββββ-n decay

- Cross section measured at CERN (Hagner et. al.)

- Can be measured in-situ, even for near detectors 
with muon rate ~ 10 Hz
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355 m
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112 m208 m

Cosmic-ray Muon
• Use a modified Geiser parametrization for cosmic-ray flux at surface
• Apply MUSIC and mountain profile to estimate muon intensity & energy

138976055Mean Energy (GeV)

0.0410.170.731.16Muon intensity 
(Hz/m2)

35520811298Overburden (m)
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Muon System
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Water Shield
• Pool around the central detectors - 2.5m water in all directions.

• Side, bottom & AD surfaces are reflective (Tyvek or equivalent)

• Outer shield is optically separated 1m  of water abutting sides and bottom 
of pool
– PMT coverage ~1/6m2 on bottom and on two surfaces of side sections

• Inner shield has ≥1.5m water buffer for AD’s in all directions but up, 
there the shield is 2.5m thick
– 8” PMTs 1 per 4m2 along sides and bottom - 0.8% coverage

Far Hall
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Muon System Active Components

• Inner water shield
– 415 8” PMTs

• Outer water shield
– 548 8” PMTs

• RPCs
– 756  2m × 2m chambers in 189 modules

– 6048 readout strips 
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Summary of Systematic Uncertainties

0.32% (Daya Bay near)

0.22% (Ling Ao near)

0.22% (far)

Backgrounds

0.2%Signal statistics

0.38% (baseline)

0.18% (goal)

Detector 

(per module) 

0.087% (4 cores)

0.13% (6 cores)

Reactors

Uncertainty sources
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(hep-ex/0701029)

Daya Bay Conceptual Design Report


