Status of the T2K experiment

Ken Sakashita(KEK) for the T2K collaboration 2007/June/13, DBD07

1. Introduction

2. T2K experiment

- Features and Prospects

- Hadron-production measurement
- 3. Short summary of the construction status

4. Summary

Neutrino oscillation

Three flavor mixing

What does T2K aim for ?

1. discovery of a finite θ_{13}

- open the possibility to measure CPV phase $\boldsymbol{\delta}$
- important interplay with mass ordering and $0\nu\beta\beta$

$$|m_{ee}| \equiv \left| \sum_{i} m_i \underbrace{U_{ej}^2}_{i} \right|$$
 effective mass

- 2. precise measurement of other parameters
 - Is θ_{23} maximal mixing ?
- 3. CPV in lepton sector
 hint on Baryon# asymmetry of Universe

T2K experiment (J-PARC E11)

~T2K: Tokai to Kamioka LBL Neutrino Oscillation Experiment~

- T2K 1st-phase
 - ✓ discovery of a finite θ_{13} by observing v_e appearance
 - measure v_e app. in T2K-I $\rightarrow \delta$ (CPV) in T2K 2nd-phase
 - ✓ precise measurement of θ_{23} , Δm^2_{23} by v_{μ} disappearance

Construction of new v beam-line / detectors : 2004~2008 Experiment : 2009 ~

Narrow-band intense neutrino beam

v Energy Reconstruction

• Energy Rec. is possible for **CC Quasi-Elastic (CCQE)**

Super Kamiokande (far detector)

- 50 kton water Cherenkov detector (fiducial volume: 22.5 kton)
 - ~10000 x 20 inch PMTs (inner detector)
- good hit-ID: e-like(shower ring) / µ-like
- $\delta E_{scale} \sim 2\%$

Physics prospects

1. θ_{13} measurement by v_e appearance 2. precise measurement of $(\theta_{23}, \Delta m^2_{23})$

3. Hadron-production measurement

θ_{13} measurement by ν_e appearance

• simplified probability of $v_{\mu} \rightarrow v_{e}$ $\Delta m^{2}_{31} = \Delta m^{2}_{32} >> \Delta m^{2}_{12}$

 $P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin\left[1.27\Delta m_{31}^{2}L/E\right]$

common as v_{μ} disappearance

• However, more exact $P(\nu_{\mu} \rightarrow \nu_{e})$ composes not only θ_{13} but also other unknown parameters

 $\theta_{13} \text{ term} \qquad CPV \text{ term}$ $P(v_{\mu} \rightarrow v_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31} - 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} + \dots$

T2K observable:
$$P(v_{\mu} \rightarrow v_{e}) \implies sin^{2}(2\theta_{13})$$

some ambiguities due to unknown parameters, but more sensitive than the current limit

and, it is possible to measure CPV by $\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})}$ in T2K-II

 $v_{\rm e}$ appearance e-like event • signal : (e^{-}) from v_e CCQE • background beam intrinsic v_e • v_{μ} NC1 π^{0} , in which π^{0} is mis-ID as e⁻ 50 events/0.1GeV π^0 event (SK) Expected signal + bkg Π⁰ $\sin^2(2\theta_{13}) = 0.1$ 40 $\Delta m^2 = 2.5 \times 10^{-3}$ small opening angle 30 5years (5 x 10²¹ pot) jo # 20 # of events in $0.35 < E_v(GeV) < 0.65$ - signal 103 - Beam v_e bkg. 13 Total bkg. - v_{μ} bkg (CC+NC1 π^{0}) 10 10 beam ν_e bkg understanding bkg. is a key issue °O $\begin{array}{c} 3 \quad 3.5 \quad \textbf{4} \quad 4.5 \quad \textbf{5} \\ \text{Reconstructed } E_{\nu(GeV)} \\ \textbf{Rec. } E_{\nu} \quad \textbf{(GeV)} \end{array}$ 2 0.5 2.5 1.5

Expected sensitivity of θ_{13}

• > x10 improvement from CHOOZ results for almost any $\delta \sin^2(2\theta_{13}) = 0.008 (90\% \text{ C.L.})$ for $\delta = 0$, $\Delta m^2_{13} = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$

90%C.L. sensitivity @5years (5 x 10²¹ pot) w/ stat. + 10% bkg. systematic error

Complementary measurement of θ_{13}

- Reactor Experiment (DoubleChooz, DayaBay, RENO ...)
 - v_e disappearance \rightarrow pure sin²2 θ_{13} measurement

 $\mathsf{P}(v_e \rightarrow v_e) = 1 - \sin^2 2\theta_{13} \cdot \sin^2 (1.27 \Delta m_{31}^2 \text{L/E}) + \mathsf{O}(\Delta m_{21}^2 / \Delta m_{31}^2)$

precise measurement of $(\theta_{23}, \Delta m^2_{23})$

non-QE bkg

€ 0.005 0.004

0.003

0.002

0.00

- ν_{μ} disappearance
- goal
 - $\delta(\sin^2 2\theta_{23}) \sim 0.01$
 - $\delta(\Delta m^2_{23}) \sim < 1 \ge 10^{-4} \text{ eV}^2$

Requirements on systematic error

- Non-QE/QE ratio : <5%
- Energy scale : <2%
- flux normalization : <10%
- Spectrum shape : <20%
- Spectrum width : <10%

required errors on Φ^{SK}_{exp}.(E_ν)

Hadron-production measurement

- expect $\Phi^{SK}_{exp}(E_{\nu})$ precisely in order to reduce syst. errors
- $\Phi^{SK}_{exp.}(E_{\nu}) = \mathbf{R}_{F/N}(E_{\nu}) \times \Phi^{ND}(E_{\nu})$
 - $R_{F/N}(E_v)$ is sensitive to hadron-production distribution
- Requirements on the accuracy of $R_{F/N}(E_{\nu})$

 - v_{μ} disapp.: required errors on $\Phi^{SK}_{exp} \Rightarrow \frac{\delta R_{F/N}(E_{\nu}) < 2\sim3\%}{E_{\nu: 0-1.5 GeV, 100 MeV/bin}}$
- There are no measurements of 30GeV ~ 50GeV p+C

Experimental measurement of the hadron-production is necessary !!

- Requirements on hadron-production measurements
 - Measure (P_{π} , θ_{π}) distribution with <10% stat. error for each 150MeV/c x 20mrad bin in the region: 0.3 < P_{π} (GeV/c) < 10 and 0< θ_{π} (mrad) < 400

- **Measure K**/ π **ratio** with <10% accuracy
 - high energy v_{μ} ($\rightarrow NC1\pi^{0}$ bkg.) from K decay

CERN NA61 Experiment

- Detector w/ Large acceptance
 - TPC w/ magnetic field + TOF
 - PID(p,K, π ..) w/ dE/dx and TOF
- **p+C for T2K in 2007** (,2008)
 - thin(1cm), thick(10cm,90cm) targets

• Impact of NA61

	T2K goal	Error from R _{F/N} w/ NA61
δN_{bkg} for νe app.	10%	< 4%
$\delta(\sin^2 2\theta_{23})$	1%	0.5%
$\delta(\Delta m^2{}_{23}) \ [x10^{-4} \ eV^2]$	< 1	0.15

→ get ready for T2K which starts in 2009

Construction status

J-PARC

(Japan Proton Accelerator Research Complex)

3 GeV tunnel Linac • Construction & Commissioning are in progress • Linac successfully accelerated up to the design energy of 181MeV 3G • MR commissioning will start in 2008

Neutrino Facility at J-PARC

Beam-line construction 2004.Apr ~ 2009.Mar First Beam in 2009.Apr

Beam direction

- Requirement on the beam direction < 1 mrad
 - reduce syst. error of Δm_{23}^2 caused by δE_{ν}
 - δ (p beam pos. on target) < 1mm
- beam-line alignment using GPS
- monitor direction of the μ and ν_{μ}

Beam dump

proton beam

muon monitor @~110m

- IC & semi-conductor

A New Neutrino Beam line with MW fast ext. beam

- Technical challenges
 - Thermal shock \rightarrow use graphite for target and beam dump
 - Heat load → water cooling everywhere
 - Radiation → shield & remote maintenance
- Construction & final R&D of each component are in progress

Beam Dump

Near Detectors @ 280m

- Off-axis detector
 - measure ν beam energy, flux and flavor contents
 - study v cross section (water/carbon)
 - Tracker(FGD,TPC), Pi0 detector and EM calorimeter in the UA1 magnet (0.2T)
- On-axis detector
 - v beam direction monitor
- Beam/detector commissioning will start with on-axis detector in Apr/2009
 - commissioning of off-axis detector in the fall of 2009

Summary

• T2K

Start from Apr/2009

- off-axis beam $\rightarrow E_v \sim \text{sub-GeV \& SK as far detector}$
- discover a finite θ_{13} >x10 improvement
 - if we measure v_e app. in T2K-I \rightarrow CPV in T2K-II
 - complementary with Reactor experiment
 - interplay with mass ordering and $0\nu\beta\beta$
- precise measurement: $\delta(\sin^2\theta_{23}) \sim 1\%$, $\Delta m^2_{23} < 1 \ge 10^{-4} \text{ eV}^2$
- new hadron-production measurement: CERN NA61
- Construction of Accelerators and Neutrino Facility at J-PARC are in progress