Present Status and Future Prospects of KamLAND

The International Workshop on Double Beta Decay and Neutrinos Jun. 12, 2007 Itaru Shimizu (Tohoku Univ.)

Solar Neutrinos : Prediction and Measurement

Prediction

Measurement

SSM (Standard Solar Model)

Super-Kamiokande, <u>SNO</u> NC/CC discrimination CI (Homestake) Ga (Gallex/GNO, SAGE)

Solar Neutrino Problem

Measurements show significant v_e deficit from the sun

Neutrino Oscillations

KamLAND Experiment

KamLAND Collaboration

T. Araki,1 K. Eguchi,1 S. Enomoto,1 K. Furuno,1 K. Ichimura,1 H. Ikeda,1 K. Inoue,1 K. Ishihara,1,* T. Iwamoto,1,†
T. Kawashima,1 Y. Kishimoto,1 M. Koga,1 Y. Koseki,1 T. Maeda,1 T. Mitsui,1 M. Motoki,1 K. Nakajima,1 H. Ogawa,1
K. Owada,1 J.-S. Ricol,1 I. Shimizu,1 J. Shirai,1 F. Suekane,1 A. Suzuki,1 K. Tada,1 O. Tajima,1 K. Tamae,1 Y. Tsuda,1
H. Watanabe,1 J. Busenitz,2 T. Classen,2 Z. Djurcic,2 G. Keefer,2 K. McKinny,2 D.-M. Mei,2,‡ A. Piepke,2 E. Yakushev,2
B. E. Berger,3 Y. D. Chan,3 M. P. Decowski,3 D. A. Dwyer,3 S. J. Freedman,3 Y. Fu,3 B. K. Fujikawa,3 J. Goldman,3
F. Gray,3 K. M. Heeger,3 K. T. Lesko,3 K.-B. Luk,3 H. Murayama,3,x A.W. P. Poon,3 H. M. Steiner,3 L. A. Winslow,3
G. A. Horton-Smith,4,k C. Mauger,4 R. D. McKeown,4 P. Vogel,4 C. E. Lane,5 T. Miletic,5 P.W. Gorham,6 G. Guillian,6
J. G. Learned,6 J. Maricic,6 S. Matsuno,6 S. Pakvasa,6 S. Dazeley,7 S. Hatakeyama,7 A. Rojas,7 R. Svoboda,7
B. D. Dieterle,8 J. Detwiler,9 G. Gratta,9 K. Ishii,9 N. Tolich,9 Y. Uchida,9,{ M. Batygov,10 W. Bugg,10 Y. Efremenko,10
Y. Kamyshkov,10 A. Kozlov,10 Y. Nakamura,10 C. R. Gould,11 H. J. Karwowski,11 D. M. Markoff,11 J. A. Messimore,11
K. Nakamura,11 R. M. Rohm,11W. Tornow,11 R.Wendell,11 A. R. Young,11 M.-J. Chen,12 Y.-F.Wang,12 and F. Piquemal13

(KamLAND Collaboration)

1Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan 2Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA 3Physics Department, University of California at Berkeley, Berkeley, California 94720, USA, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA 5Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA 6Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA 7Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA 8Physics Department, University of New Mexico, Albuquerque, New Mexico 87131, USA 9Physics Department, Stanford University, Stanford, California 94305, USA 10Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 11Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA, and Physics Departments at Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 12Institute of High Energy Physics, Beijing 100039, People's Republic of China 13CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France

KamLAND Experiment

2 flavor neutrino oscillation

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [\text{eV}^2] l[m]}{E[\text{MeV}]}\right)$$

most sensitive region

$$\Delta m^2 = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$$

~ 3 × 10⁻⁵ eV²

→ LMA solution

Good condition to confirm solar neutrino oscillation

Kamioka Liquid Scintillator Anti-Neutrino Detector

Physics Target in KamLAND

observed energy (MeV) 0.4 2.6 8.5 1.0 solar neutrino geo neutrino supernova neutrino reactor neutrino solar neutrino reactor neutrino ν_x geo neutrino prompt ν_x ν_e р delayed mean capture time ~ 200 µsec on proton neutrino detection by electron scattering anti-neutrino detection by inverse beta-decay

Evidence of Disappearance and Distortion

Precise Measurement of Oscillation Parameter

Future Prospects KamLAND II (Solar Neutrino Phase)

Future Solar Neutrino Measurement

low energy solar neutrino observation

Status of the Solar Model

heavy element abundance

new solar model

Predicted Solar Neutrino Flux

J.N. Bahcall and A.M. Serenelli, Astro. Phys. J. 621, 85 (2005)

	Model	pp	pep	hep	$^{7}\mathrm{Be}$	⁸ B	^{13}N	$^{15}\mathrm{O}$	$^{17}\mathrm{F}$
	BP04(Yale)	5.94	1.40	7.88	4.86	5.79	5.71	5.03	5.91
	BP04(Garching)	5.94	1.41	7.88	4.84	5.74	5.70	4.98	5.87
	BS04	5.94	1.40	7.86	4.88	5.87	5.62	4.90	6.01
	$BS05(^{14}N)$	5.99	1.42	7.91	4.89	5.83	3.11	2.38	5.97
<u>GS98</u>	BS05(OP)	5.99	1.42	7.93	4.84	5.69	3.07	2.33	5.84
AGS05	BS05(AGS,OP)	6.06	1.45	8.25	4.34	4.51	2.01	1.45	3.25
	BS05(AGS,OPAL)	6.05	1.45	8.23	4.38	4.59	2.03	1.47	3.31
				-10%		-38%)	
	S ₃₄ : 2.5%		%	S _{1,14} : 8.4%					

- LUNA experiment measured nuclear cross section precisely
- Dominant error comes from heavy element abundance

KamLAND will measure ⁷Be and CNO solar neutrinos and test the lower abundance of heavy element (AGS05)

KamLAND II (Solar Neutrino Phase)

KamLAND singles spectra

⁷Be ν observation

B.G. reduction requirement ~ 1 μ Bq / m³

Energy Spectra after Purification

assuming 10⁻⁶ reduction of ²¹⁰Pb, ⁸⁵Kr and ⁴⁰K

expected event rate (no oscillation) 0.3 < E < 0.8 MeV ⁷Be v 79.9 events / day pep v 3.8 events / day

CNO v 16.3 events / day

Purification of Liquid Scintillator

distillation method

separation of substances based on boiling point differences

Reduction Efficiency by Distillation

Pb reduction

distillation in ~ liter-system

radioactive nuclei	reduction	goal		
⁴⁰ K	3.8 × 10 ⁻² (PPO, ⁴⁰ K)	10 ⁻¹ ~ 10 ⁻²		
⁸⁵ Kr	< 1.3 × 10 ⁻⁵ (Dodecane, Kr)	10 -5 ~ 10 ⁻⁶		
²¹⁰ Pb	< 7.6 × 10 ⁻⁵ (Dodecane, ²¹² Pb)	10 -4 ~ 10 ⁻⁵		
²²² Rn	6.0 × 10 ⁻⁴ (Dodecane, ²²² Rn)	~ 10-3		
	_			

almost succeeded in the reduction goal

Purification Status in Real System

event rate map before purification (arbitrary units)

Purification Status in Real System

event rate map after purification (arbitrary units)

Muon Spallation Background

	Life time	Q value	Hagner et al. (ev/d/kton)	
¹⁰ C	27.8 sec	3.65 MeV (β+)	139	
¹¹ C	29.4 min	1.98 MeV (β+)	1039 serious for pep /	B.G. CNΟ ν
⁷ Be	76.9 day	0.478 MeV (EC)	231	

¹¹C Rejection by Neutron Events

nuclear spallation reaction by cosmic-ray muons

¹¹C rejection by triple coincidence
(1) cosmic-ray muon
(2) neutron (mean capture time ~ 210 μsec)
(3) ¹¹C (lifetime = 29.4 min)

point-like rejection (not track-like) using neutron vertex information

$${}^{12}C + X \rightarrow {}^{11}C + n + Y + \cdots$$

 $X = \gamma, n, p, \pi^-, \pi^+, e, \mu$ n production rate ~ 95% (Galbiati et al., hep-ph/0411002)

Energy Spectra after ¹¹C Rejection

Double Beta Decay with KamLAND Detector : what could be done

Double Beta Decay in KamLAND

Characteristics

(1) Large amount of liquid scintillator (1,000 ton LS)

(2) Target isotope can be dissolved in the LS

advantages

- high statistics by large target isotope
- low external B.G. by self shielding

disadvantages

poor energy resolution

energy resolution ~ 6.2% / sqrt(MeV)

• muon spallation B.G. from ¹²C target

low energy backgrounds (E < 3 MeV) are dominated by ${}^{11}C$, ${}^{10}C$

Target Isotope for $0\nu\beta\beta$ search

Majorana + inverted hierarchy

 $< m_{\beta\beta} > = 30 \text{ meV}$

natural abundance : 5.9%

Nd-loaded scintillator in SNO++

(M. Chen, INT Underground Science Workshop)

Background Consideration

(1) 2νββ

- The NEMO-3 experiment gives a finite value for ¹⁵⁰Nd half-life :[9.7 \pm 0.7(stat) \pm 1.0(syst)] \times 10¹⁸ y. 172 ± 22 events / 3y (3.45 < E < 3.65 MeV)(2) muon spallation products - long-lived products --- ¹¹Be (lifetime 19.9 sec, Q = 11.5 MeV) 8 ± 4 events / 3y (preliminary) (3.45 < E < 3.65 MeV) (3) radioactive impurity in LS -²⁰⁸TI (Q = 5.0 MeV) beta decay ~ 700 events / 3 y (KamLAND LS) (3.45 < E < 3.65 MeV)²¹²Bi (35.9%) 208**T** ²⁰⁸Pb ²³²Th chain 4.4 min stable 5.0 Me visible energy ~ 0.4 MeV ~ 10⁻³ rejection of ²⁰⁸TI with 10% inefficiency delayed coincidence tagging (after purification of low energy B.G.)

Energy Spectrum in KamLAND

Majorana + inverted hierarchy

 $< m_{\beta\beta} > = 30 \text{ meV}$

enrichment : 60% ~ 10 times target

energy resolution : 6.2% / sqrt(MeV) (assuming current resolution in KamLAND)

Prospects for $0\nu\beta\beta$ search

• enrichment

AVLIS (Atomic Vapor Laser Isotope Separation) in France possibility of high production rate ~ kg/h for ¹⁵⁰Nd 2000 ~ 2003 : MENPHIS facility ~ few kg/h for ²³⁵U

- detector improvements
 - energy resolution (light yield)

wavelength shifter to cancel the chemical quenching by Nd compounds

- energy scale

need to keep energy scale and resolution stability within 0.5%

- sensitivity
 - energy spectrum statistical test

 $< m_{\beta\beta} > = 30 \text{ meV}$: 6 sigma significance for 3 year measurement

Majorana + inverted hierarchy test

Summary

Results and prospects for KamLAND

- Reactor neutrino experiment contributed to the solution of the solar neutrino problem.
 - oscillatory shape of reactor anti-neutrinos
 - precise measurement of oscillation parameter
- We will start ⁷Be, pep and CNO solar neutrino observation after the purification of LS.
 purification of LS is now going on ...

Double beta decay

 Possibility of double beta decay experiment with the KamLAND detector was considered.