Double Chooz: A Reactor θ_{13} Experiment

F.Suekane

Tohoku Univ.

International Workshop on Double Beta Decay and Neutrinos 2007-6-13 @ Osaka

Double Chooz Collaboration

Collaboration

• Japan

- Tohoku Univ.
- Tokyo Metropolitan Univ.
- Niigata Univ.
- Tokyo Institute of Technology
- Kobe Univ.
- Tohoku Gakuin Univ.
- Miyagi University of Education
- Hiroshima Inst. of Technology

• USA

- Livermore nat lab
- Argonne
- Columbia Univ
- Chicago Univ
- Kansas U
- Notre Dame U
- Tennesse U
- Alabama U
- Drexel U
- Illinois Inst tech

- France
 - Saclay
 - APC (collège de France)
 - Subatech Nantes
- Germany
 - Max planck Heidelberg
 - Munich U
 - Hamburg U
 - Tubingen U
 - Aachen U
- Spain
 - CIEMAT Madrid
- England
 - Oxford
 - Sussex Univ
- Russia
 - Kurchatov inst
 - Sc. Acad.
- Brasil
 - CBPF
 - UNICAMP

Contents

Reactor θ_{13} measurement

Description & Status of Double Chooz

Expected schedule & sensitivities

Potential of reactor neutrino experiments

Summary

v Oscillations: 3 flavor case

 $\begin{array}{lll} \text{Mixings} & \text{MNS Matrix} & s_{ij} = \sin\theta_{ij}, & c_{ij} = \cos\theta_{ij} \\ \begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

Oscillations

6 parameters can be accessible from neutrino oscillation.

 V_{μ}

 $v_{ au}$

7

Our Current Knowledge

$$\begin{vmatrix} m_3^2 - m_2^2 \end{vmatrix} \sim 2.6 \times 10^{-3} \text{eV}^2, & (m_2^2 - m_1^2) \sim 8.0 \times 10^{-5} \text{eV}^2 \\ U_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & s_{13} e^{i\delta} \\ -0.4 & 0.6 & 0.7 \\ 0.4 & -0.6 & 0.7 \end{pmatrix} \quad |s_{13}| < 0.2 \end{aligned}$$

Transition Amplitudes, if $m_1 << m_2 < m_3$

Remaining Issues of ν Oscillation Studies

Issue	Method
$ heta_{13}$	$\begin{bmatrix} v_{\mu} \rightarrow v_{e} \end{bmatrix}_{A} \sim \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \mp 0.05 \cdot \sin\theta_{13} \sin\delta \\ \begin{bmatrix} \overline{v}_{e} \rightarrow \overline{v}_{e} \end{bmatrix}_{R} = 1 - \sin^{2}2\theta_{13}$
δ	$\left[\nu_{\mu} \rightarrow \nu_{e}\right]_{A} - \left[\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}\right]_{A} \sim \underline{\sin 2\theta_{13}} \sin \delta$
θ_{23} degeneracy	
$\sin\theta_{23} = \frac{1 \pm \sqrt{1 - \sin^2 2\theta_{23}}}{2}$	$\left[\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{e} \right]_{A} \sim \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \mp 0.05 \cdot \sin\theta_{13} \sin\delta$
mass hierarchy $(m_2 < m_3 \text{ or } m_3 < m_2)$	$\begin{bmatrix} v_{\mu} \rightarrow v_{e} \end{bmatrix} - \begin{bmatrix} \overline{v}_{\mu} \rightarrow \overline{v}_{e} \end{bmatrix}$ ~ 0.00017L[km] · sign(Δm_{23}^{2})sin ² 2 θ_{13}

 θ_{13} plays key roles => Measurement is urgent

Reactor θ_{13} measurement

Small deficit (=sin²2 θ_{13}) ==> High Precision is necessary (δ <1%)

280 m site

2004-2007: Detector design

Solvent: 20% PXE – 80% Dodecane

• Gd loading: being developed @MPIK

- 0.1% Gd loading of Gd-dmp (Beta Dikitonate)
- Long term Stability promising

nd purifica

- LY ~7000 ph/MeV: 6 g/I PPO + 50 mg/I Bis-MSB
- Attenuation length: 5-10 m meters at 420 nm

MPIK new building for stora

• Radiopurity \rightarrow U: 10⁻¹² g/g - Th: 10⁻¹² g/g - K: 10⁻⁹ g/g

Gd doped scintillator

Gd(dpm)₃

- Heidelberg MPIK \rightarrow Transition to industrial production of 100 kg of Gd \rightarrow summer 2007
- On-site storage building *available* at Chooz \rightarrow Upgrade will be done in 2007

07.06.13

DBD07

Detector design

PMT & B Shield and Support

PMT geometory

Magnetic Shield Support Structure Spain

DBD07

high performance low background 10" PMT Japan

Improving CHOOZ:

@CHOOZ: R = 1.01 ± 2.8%(stat)±2.7%(syst) \longrightarrow current θ_{13} limit

Statistical error –

	CHOOZ	Double-Chooz
Target volume	5.6 m ³	10.3 m ³
Target composition	6.8x10 ²⁸ H/m ³	6.8x10 ²⁸ H/m ³
Data taking period	Few months	3-5 years
# of Events	2700	CHOOZ-far : 40 000/3 y
		CHOOZ-near: $>1x10^{6}/3$ y
Statistical error	2.7%	0.5%

Luminosity incerase L = $\Delta t \times P(GW) \times Np$

hep-ex/0606025

Systematics

		Chooz	Double-Chooz	
Reactor- induced				
	Volume	0.3 %	0.2 %	Same weight sensor for both det.
Detector - induced	-			_
	-			-
	Live time	few %	0.25 %	Measured with several methods
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	(see next slide)
Total		2.7 %	< 0.6 %	

Relative Normalization: Analysis

- ✓ @Chooz: 1.5% syst. err.
 - 7 analysis cuts
 - Efficiency ~70%
- ✓ Goal Double-Chooz: ~0.3% syst. err.
 - 2 to 3 analysis cuts
- ✓ Selection cuts
 - neutron energy
 - (- distance e+ n) [level of accidentals]

- ∆t (e+ - n)

* Efficiency is insensitive to the energy scale error* No fiducial cuts

Double-Chooz Far Detector starts in 2008 Double-Chooz Near detector follows 16 months later

07.06.13

One possible case of Complementarity to Accelerator- θ_{13}

27

Potential of Reactor v experiments

Conclusions & outlook

Double Chooz R&D's are in final stages & Detector Construction starts this year.

First data taking expected to start in 2008 with far detector only => $sin^2(2\theta_{13}) < 0.06$ in 1,5 year

In 2010 take data with both near and far detectors => $sin^2(2\theta_{13}) < 0.025$ in 3 years

We will know or set a strong limit on the size of θ_{13} within a few years & the neutrino oscillation studies will go in a new phase.

Back ups

Experimental context

DBD07

Sensitivity (a limit is put)

Discovery potential (a measurement is done)

Triple Chooz

Just an idea ... !

Large cavity next to existing lab, available from 2011 (after dismountling of the ancient CHOOZ-A underground reactor).

A >100t detector could add to Double Chooz to investigate spectral distorsions

Near laboratory infrastructure

Preliminary civil engineering study beginning 2006

Detailed study 2006-2007

Autorisation & call for the bid 2007-2008

Construction 2008-2009

- 45 m shaft
- Liquid storage area
- Buildings & equipements

Integration from end of 2009

07.06.13