Neutrino and Cosmology

Dept. of Physics and Astrophysics Nagoya University Naoshi SUGIYAMA

Brief brief review of thermal history of the Universe Useful Conversion **T**emperature $1 \text{ eV} \sim 10^4 \text{ K}$ Present epoch 2.725K~10⁻⁴eV Recombination 3000K~0.1eV • Redshift 1+z=T/2.725K

Thermal History of the Universe

- After Inflation, the Universe is dominated by Radiation (Massless Components)
- At T=1MeV, neutrinos are decupled from thermal bath
- At T=500keV, positrons and electrons are pairannihilated.
 - Photons are produced, and photon temperature increases: Tphoton > Tneutrinos
- At 1MeV~100keV, Primordial Nucleosynthesis
- At 1eV(z=24000Ω_Mh²), radiation and matter densities become equal: equality epoch. Since then, the Universe is dominated by Matter.
- Recombination takes place at 0.1eV (z=1089)

1. What is the role of Neutrios on **Observational Cosmology?** Neutrinos were mostly massless through history ■ Until T ~m,, massless ■ e.g., 0.1eV roughly corresponds to 1000K, which is after (yet close) to the recombination epoch, 3000K.

Neutrinos are Radiation Component

On top of photons, neutrinos consist of radiation component

Modify (if change the number of family)

- Expansion Rate of the Universe=Hubble Parameter
 - Primordial Nucleosynthesis
- Matter Radiation Equality Epoch
 - Temperature Anisotropies of Cosmic Microwave Background (CMB)

Evolution of the Universe

Friedmann Equation:

Einstein Equation with homogeneity & isotropy Energy-Momentum Conservation

$$= H^2 = \frac{8\pi G}{3}\rho - \frac{K}{a^2} + \frac{\Lambda}{3}$$

$$= \rho_{Radiation} + \rho_{Matter} \quad \rho_{Radiation} \equiv \rho_{\gamma} + \rho_{v}$$

 $\rho \propto a^{-3(1+w)}$: $w \equiv p / \rho(w = 0 \text{ for matter, } 1/3 \text{ radiation})$

 $\rho_c = 3H_0^2 / 8\pi G, H_0$: Hubble Const.

 $\Omega \equiv \rho / \rho_c, \Omega_K = -K / H_0^2, \Omega_\Lambda \equiv \Lambda / 3H_0^2$

Constraints from Big Bang Nucleosysnthesis

$$\rho_{\nu} = N_{\text{eff}} \frac{7}{8} \left(\frac{T_{\nu}}{T}\right)^4 \rho_{\gamma}$$

Expansion Rate (Hubble Parameter) depends on Effective Neutrino Number, N_{eff}

Change the predicted abundances of light elements

Larger Neff \rightarrow Higher Expansion \rightarrow Neutrons were decoupled from Chemical Equilibrium Early

$$n \leftrightarrow p + e^- + \overline{\nu}$$

$$n + \nu \leftrightarrow p + e^{-}$$

Larger number of Neutrons were left

Larger amount of Helium were left

Compare Theoretical Prediction with

Observational Abundances of ⁴He, D, ³He, ⁷Li
 Determination of Ω_Bh² = 0.023±0.001 from Cosmic Microwave Background Anisotropies

Life is not so Simple: Some Caveats

- Observations were not consistent with each other
 - Treatments of Systematics are Complicated (Effect of stellar absorptions etc.)
 - Cheating?
 - Neutron Life Time:

Used to be 885.7 ± 0.8 , but new measurement: $878.5\pm0.7(\text{stat})\pm0.3(\text{sys})$ (Serebrov, et al., (2005)) Shorter Life time -> Neutron Decoupling from Chemical equaillibrium becomes later -> Less Neutrons are left -> Less Hellium Abundance

Life is not so Simple: Some Caveats

- Observations were not consistent with each other
 - Treatments of Systematics are Complicated (Effect of stellar absorptions etc.)
 - Cheating?
 - Neutron Life Time:

Used to be 885.7 ± 0.8 , but new measurement: $878.5 \pm 0.7(\text{stat}) \pm 0.3(\text{sys})$ (Serebrov, et al., (2005)) Shorter Life time -> Neutron Decoupling from Chemical equaillibrium becomes later -> Less Neutrons are left -> Less Hellium Abundance

Helium Abundance History

Courtesy from M. Kawasaki

Life is not so Simple: Some Caveats

- Observations were not consistent with each other
 - Treatments of Systematics are Complicated (Effect of stellar absorptions etc.)
 - Cheating?
 - Neutron Life Time:

Used to be 885.7 ± 0.8 , but new measurement: $878.5\pm0.7(\text{stat})\pm0.3(\text{sys})$ (Serebrov, et al., (2005)) Shorter Life time -> Neutron Decoupling from Chemical equaillibrium becomes later -> Less Neutrons are left -> Less Hellium Abundance

0.4% Neutron Life Time Dependence

Mathews et al (2005)

Constraints from Cosmic Microwave Background Anisotropies

- Increase N_{eff}, pushes matter-radiation equality at the later epoch, which modifies the peak heights and locations of CMB spectrum.
- Additional neutrino species alters the damping

tail on high *l*'s.

Bound on N _{eff}	Data used	
$\begin{array}{l} 1.8 \leq \mathrm{N_{eff}} \leq 3.7 \\ 1.3 \leq \mathrm{N_{eff}} \leq 6.1 \\ 1.6 \leq \mathrm{N_{eff}} \leq 3.6 \end{array}$	CMB,BBN CMB, BBN(D) BBN(D+ Y_p)	P. Serpico <i>et al.,</i> (2004) A. Cuoco <i>et al.,</i> (2004)
$\begin{array}{l} 1.4 \leq N_{eff} \leq 6.8 \\ 1.9(2.3) \leq N_{eff} \leq 7.0(3.0) \\ 1.7 \leq N_{eff} \leq 3.0 \\ N_{eff} \leq 4.6 \\ 1.90 \leq N_{eff} \leq 6.62 \end{array}$	CMB, LSS, HST CMB, LSS, (+BBN CMB, BBN CMB, BBN CMB, LSS, HST	 P. Crotty <i>et al.</i>, (2003) NS. Hannestad, (2003) V. Barger <i>et al.</i>, (2003) R. Cyburt <i>et al.</i> (2005) E. Pierpaoli (2003)

2. How Neutrino Mass Affect? Present Density Parameter $\Omega_{\nu} = [3m_{\nu}/(93.84 \text{ eV})]h^{-2}$ Neutrino Components prevent galaxy scale structure to be formed due to their kinetic energy Constraints from Large Scale Structure Change the matter-radiation ratio near the recombination epoch, if $m \sim a$ few eV Constraints from Cosmic Microwave Background (Ihikawa's Talk)

Large Structure Formation

- Self Gravity of Cold Dark Matter forms the structure
- Comparison between Numerical Simulation and Observations are Superb
 - Power Spectrum (matter distribution in k-space) obtained by Cold Dark Matter fluctuations fits very well to the data

Numerical Simulation of Large Scale Structure

Courtesy by Naoki Yoshid

1 Billion Light Years

Large Scale Structure of the Universe

Cluster of Galaxies

Filament Structure

Void

Cold Dark Matter

Neutrino as Dark Matter (Hot Dark Matter)

Numerical Simulation, at z=10

Cold Dark Matter

Neutrino as Dark Matter (Hot Dark Matter)

Numerical Simulation, at present

- Neutrinos cannot be Dark Matter (Hot Dark Matter) since Galaxy scale structure cannot be formed!
- Even small fraction of Neutrino component with Cold Dark Matter causes Problem

Set Constraints on Neutrino Mass and Neff

WMAP 3yr Data paper by Spergel et al.

Data Set	$\sum m_{\nu}$ (95% limit for $N_{\nu} = 3.04$)	N_{ν}
WMAP	1.8 eV (95% CL)	j
WMAP + SDSS	1.3 eV (95% CL)	$7.1^{+4.1}_{-3.5}$
WMAP + 2dFGRS	0.88 eV (95% CL)	2.7 ± 1.4
CMB + LSS + SN	0.66 eV (95% CL)	3.3 ± 1.7

Summary

- Cosmology can set the most stringent constraints on the properties of Neutrinos: # of Species, and Masses
 Still we have some room for improvement for
- Still we have some room for improvement, for example Polarization of CMB Anisotropies
 PLANCK (2008) or Future Satellite