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Brief brief review of ther mal
history of the Univer se

m Useful Conversion

= Temperature 1eV ~ 1R
Present epoch 2.725K~1&V

Recombination 3000K~0.1eV
m Redshift 1+z=T/2.725K
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Thermal History of the Universe

Matter-Radiation
Equality Epoch

Electro-weak Neutrino
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m After Inflation, the Universe is dominated by
Radiation (Massless Components)

m At T=1MeV, neutrinos are decupled from ther
bath

m At T=500keV, positrons and electrons are bal
annihilated.

= Photons are produced, and photon temperature
Increases:. Tphoton > Tneutrinos

m At 1MeV~100keV, Primordial Nucleosynthesis

m At 1eV(z=2400@,,h?), radiation and matter
densities become equal: equality epoch. Since
then, the Universe Is dominated by Matter.

s Recombination takes place at 0.1eV (z=1089)




1. What iIstherole of Neutrios on

Observational Cosmology?

= Neutrinos were mostly massless through histojgy,
= Until T ~m,, massless
me.d., 0.1eV roughly corresponds to 1000K

which Is after (yet close) to the recombinatidjg
epoch, 3000K.

Neutrinos are Radiation Compong




= On top of photons, neutrinos consist of radiation
component

= Modify (if change the number of family)

= Expansion Rate of the Universe=Hubble
Parameter

= Primordial Nucleosynthesis

= Matter Radiation Equality Epoch

m [emperature Anisotropies of Cosmic Microwave
Background (CMB)




Evolution of the Universe

Friedmann Equatian
Einstein Equation with homogeneity & isotropy
EnergyMomentum Conservation
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Matter-radiation equality:

Matter Dominant
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Matter-radiation equality:

Radiation
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Constraints from Big Bang
Nucleosysnthesis

Expansion Rate (Hubble Parameter) depends C
Effective Neutrino Number, N

Change the predicted abundances of light ele




Larger Neff— Higher Expansior~
Neutrons were decoupled from
Chemical Equilibrium Early
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Compare Theoretical Prediction with

s Observational Abundances ie, D,3He, ‘L]
= Determination of)gh? = 0.0230.001 from Cosmic

Microwave Background Anisotropies
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Lifeisnot so Simple:
Some Caveats
m Observations were not consistent with each oigils

= Treatments of Systematics are Complicated (Effecisis
stellar absorptions etc.)

Cheating?

= Neutron Life Time:
Used to ba385.7+ 0.8, but new measurement:

878.5:0.7(stat)x0.3(sys) (Serebrov, et al., (2005))

Shorter Life time-> Neutron Decoupling from
Chemical equalllibrium becomes laterLess
Neutrons are lef> Less Hellium Abundance
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Helium Abundance History

WMAP Observations
T | I | I |

WMAP3 predictio

Courtesy from M. Kawasaki
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onstraints from Cosmic M icrowave
Background Anisotropies

= Increase N\, pushes mattaiadiation equality
at the later epoch, which modifies the peak
heights and locations of CMB spectrum.

= Additional neutrino species alters the damping
tail on highl’s.

~200p K I S 0 00p K




({+1)C,/2m

104

1000

100
1

T ¥ 7 11T

| L L

II:IIIII ]

i IFIlli[

L IIIII1I

PO T e N o

Illl1l1

1 LI i &t 14

10

ZEBE—AF

100
{

1000




CMB Angular Power Spectrum
. Theoretical Prediction =~ ' -
. ——N,=4 _
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Measur e the family
_ number at z=1000
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Bound on N Data used

1.8 < Negr < 3.7 CMB.BBN P
1.3 <N <6.1 CMB, BBN(D) A

1.6 < Negr < 3.6 BBN(D+1p)
1.4 < Negr < 6.8 CMB, LSS, HST P.
1.9(2.3) <N <7.0(3.0) CMB,LSS, (+BBN)S.
1.7 <N < 3.0 CMB, BBN V.
Negr <4.6 CMB, BBN R.
1.90 < Nogr <6.62 CMB, LSS, HST E.

. Serpicaet al., (2004)
. Cuocoet al., (2004)

Crottyet al., (2003)
Hannestad2003)
Bargeret al., (2003)
Cyburtet al. (2005)
Pierpaol(2003)



2. How Neutrino M ass Affect?
m Present Density Parameter
Q, =1[3m,/(93.84 eV)]h~?

= Neutrino Components prevent galaxy scale struc
to be formed due to their kinetic energy

= Constraints from Large Scale Structure

s Change the mattaadiation ratio near the
recombination epoch, if m ~ a few eV

= Constraints from Cosmic Microwave Backgroujgls
(Ihikawa's Talk)




L arge Structur e Formation

m Self Gravity of Cold Dark Matter forms the
structure

s Comparison between Numerical Simulation
and Observations are Superb
= Power Spectrum (matter distribution issgace)

obtained by Cold Dark Matter fluctuations fits
very well to the data




Numerical Simulation of Large Scale Structure

Courtesy by Naoki Yosh

1 Billion Light Years




L arge Scale Structure of the Universe

uft L Filament Structure - -
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Lar§e Scale Strucutre: One dot is a Ga
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P(k) [(h™' Mpc)?]

Power Spectrums
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Cold Dark Matter Neutrino as Dark Matt
(Hot Dark Matter)

Numerical Simulation, at present




Two Micron All Sky Survey

2MASS Galaxies
All Sky View (False Color)




= Neutrinos cannot be Dark Matter (Hot Dark
Matter) since Galaxy scale structure cannot be
formed!

m Even small fraction of Neutrino component
with Cold Dark Matter causes Problem




P(k) [(h™* Mpe)?]

1000 100 10
:I |II L I I I |I L I I I |I L I:
108 .
- CfA2+5SRS2 e -
104 % ) TRAS 1.2]y & _|
- % ¢ QDOT+ % J
o ﬂ:ﬁl\, A\ i P APM o
— C} ’,Q ‘2’ - q %_ N
—Qéggeﬁaﬁg’” N .
ol T
103 = f,-*'f‘ =
- 'standard’ CDM .
- ,h=0.5 It of . . i
D G et Half of DM Is Neutrinos
102 m =2eV
- 0 ,h=0.21
n I 1 1111 | | I N I I |
0.01 Q.1 1
large scale small scales

Alh! Mpc]




Set Constraints on Neutrino
M ass and Neff

‘WI\/IAP 3yr Data paper by Spergel et‘al.

Data Set

WMAP
WMAP + SDSS 1.3 eV (95% CL)
WMAP + 2dFGRS 0.88 eV (95% CL)
CMB -+ LSS +SN 0.66 eV (95% CL)




Summary

s Cosmology can set the most stringent
constraints on the properties of Neutrinos: # ajj
Species, and Masses

= Still we have some room for improvement, for
example Polarization of CMB Anisotropies

= PLANCK (2008) or Future Satellite




