First Result from XENON10 Dark Matter Experiment at Gran Sasso Laboratory

Masaki Yamashita Columbia University

http://xenon.astro.columbia.edu

Dark Matter Problem

Existence of dark matter is required by a host of observational data: galactic halos, clusters of galaxies, large scale structures, CMB, high-redshift SN_e Ia.

Baryonic Matter - Mostly known Visible Matter (stars) only ~1% of the total. Non-Baryonic Dark Matter New Particle -SUSY

Observations(gravitational lensing)

D. Clowe et al.. 2006

M. J. Jee and H. Ford

Bullet Cluster merger of two galaxy

A titanic collision between two massive galaxy clusters

encourage Direct Dark Matter Detection.

Weakly Interacting Massive Particle

Dark Matter is required to be

- Neutral
- Non-baryon
- Cold (non-relativistic)

SUSY

 \Rightarrow good candidate is the lightest SUSY particle is stable and likely becomes a dark matter candidate

Linear combination of SUSY particles

$$\chi_1^0 = \alpha_1 \tilde{\boldsymbol{B}} + \alpha_2 \tilde{\boldsymbol{W}} + \alpha_3 \tilde{\boldsymbol{H}}_u^0 + \alpha_4 \tilde{\boldsymbol{H}}_d^0$$

Rare Event

 10^{15} through a human body each day: only < 1 will interact, the rest is passing through unaffected!

Direct Detection Principle

WIMPs elastically scatter off nuclei in targets, producing nuclear recoils.

Direct Detection Principle

WIMPs elastically scatter off nuclei in targets, producing nuclear recoils.

Xe (A=131) is one of the best target

Direct Detection Experiments (background rejection)

The XENON Collaboration

Columbia University

Elena Aprile, Karl-Ludwig Giboni, Sharmila Kamat, Maria Elena Monzani, Guillaume Plante*, Roberto Santorelli, Masaki Yamashita **Brown University**

Richard Gaitskell, Simon Fiorucci, Peter Sorensen*, Luiz DeViveiros*

Aachen, University of Florida

Laura Baudis, Jesse Angle*, Joerg Orboeck, Aaron Manalaysay*

Lawrence Livermore National Laboratory

Adam Bernstein, Chris Hagmann, Norm Madden and Celeste Winant

Case Western Reserve University

Tom Shutt, Eric Dahl*, John Kwong* and Alexander Bolozdynya

Rice University

Uwe Oberlack , Roman Gomez* and Peter Shagin

Yale University

Daniel McKinsey, Richard Hasty, Angel Manzur*, Kaixuan Ni

LNGS

Francesco Arneodo, Alfredo Ferella*

Coimbra University Jose Matias Lopes, Joaquin Santos, Luis Coelho*, Luis Fernandes

XENON consists of US and European institutes.

Why Liquid Xenon ?

- High Atomic mass Xe (A~131) good for SI case (cross section $\propto A^2$)
- Odd Isotope (Nat. abun: 48%, 129,131) with large SD enhancement factors
- High atomic number (Z~54) and density (ρ =3g/cc):
- compact, flexible and large mass detector.
- High photon yield (~ 42000 UV photons/MeV at zero field) and high charge yield
- Easy to purify for both electro-negative and radioactive purity
- by recirculating Xe with getter for electro-negative
 - Charcoal filter or distillation for Kr removal

Event Discrimination: Electron or Nuclear Recoil

XENON10 at LNGS

Corno Grande

The Gran Sasso underground

Lab

Main research lines:

- Neutrino physics
- Dark matter
- Nuclear astrophysics
- Gravitational waves
- Geophysics
- Biology

3 experimental halls: 100 m long, 20 m wide, 18 m high (total underground area: 18,000 m²)

- Natural temperature: 6° C
- Relative humidity: 100%
- Jocation: 963 m over sea level

Installation of XENON10 at LNGS on July

Poly

March, 2006 From Columbia Univ. in NY to LNGS Muon flux ~ 24 $\mu/m^2/day$ (10⁶ reduction from sea level) Neutron Flux ~ 10⁻⁶ n/cm⁻²/sec

Shield

20 cm Lead (15cm-700Bq/kg ²¹⁰Pb, 5cm-15Bq/kg) 20 cm Polyethylene

Full checkout of cryogenics with Pulse Tube Refrigerator 10 months operation with stable condition

XENON10 Detector 48 PMTs on top

48 PMTs on top, 41 on bottom, Hamamatsu R8520 PMT:Compact metal channel: 1 inch square x 3.5 cm Quantum Efficiency: >20% @ 178 nm 20 cm diameter, 15 cm drift length 22 kg needed to fill the TPC. Active volume 15 kg. 3D position sensitive TPC Z-position: Drift Time, X-Y position: Top array of PMTs (neural network)

XENONI0 Calibration by Activated Xe

- Position dependency correction by looking at activated line.
 - Uniform source in the whole detector
- Activated Xe (5x10⁶ n/s Cf, ~ 2 weeks)
- 164 keV Xe131-m, 236 keV Xe129-m (half life ~ 10 days)
- Injected ~ 400 g activated Xe gas into detector

XENON10 nuclear and electron recoil band calibration

AmBe Neutron Calibration (NR-band) In-situ Dec 1, 2006 (12 hours) Source (~3.7MBq) in the shield

Cs-137 Gamma Calibration (ER-band) In-situ Weekly calibration Source (~1kBq) in the shield

XENON10 Background Rejection Power

~ 99.5 % rejection power For 50% Nuclear Recoil Acceptance

XENON10 Blind Analysis

- Basic Quality Cuts (QC0): remove noisy and uninteresting events
- Fiducial Volume Cuts (QC1): capitalize on LXe self-shielding
- High Level Cuts (QC2): remove anomalous events (S1 light pattern)
- In addition to those cuts Energy Window was decided before opening data.

Fiducial Volume chosen by both Analyses: 15 < dt < 65 us, r < 80 mm Fiducial Mass= 5.4 kg (reconstructed radius is algorithm dependent) Overall Background in Fiducial Volume ~0.6 event/(kg d keVee)

filled with PTFE, Now data taking started

Performance of QC2 Cut (S1 RMS Cut) on Search Data

WS003+WS004 (58days)

- 5 "non-Gaussian" events remain after all QC2 cuts on the WIMP search data.
- The sigma of delta log10(S2/S1) shows higher number (+0.09, 2-12 keVee) → the "gaussian leakage" events estimated from 137Cs data appear to be too conservative before opening the box.
- These non-Gaussian events will be studied by modifying the detector to remove a large fraction of dead LXe layers. We note that these events appear mostly at higher energies. 4 of these have been cut by the Secondary Analysis QC2 cuts.
- "Blind" analysis has provided a good sample to study these evens since the origin is different from 137Cs.

- Sum of S2 signal from Top PMTs was used for trigger.
- The threshold for S2 is 300 photoelectron (~ 10 ionization electrons) .
- A gas gain of a few hundred allows 100% S2 trigger efficiency.
- The S1 signal associated with an S2 signal was searched for in the off-line analysis.
- The coincidence of 2 PMT Hits is used in the analysis and the S1 energy threshold is set to 4.4 photoelectrons. Its efficiency is ~ 100%. (2keVee)
- The QC2 cuts efficiency varies between 95% and 80% in the 2-12 keVee energy window.

Neutron MC Simulations

- Very low threshold achieved
- Very good agreement with MC in over all range
- It is true that some uncertainty at low energy (20-35% error in sensitivity curve)
- We take average 19% but new measurement is planned for <5 keVr.

XENON10 WIMP Search Data with Blind Cuts

136 kg-days Exposure= 58.6 live days x 5.4 kg x 0.86 (ε) x 0.50 (50% NR)

- WIMP "Box" defined at ~50% acceptance of Nuclear Recoils (blue lines): [Mean, -3σ]
- 10 events (o) in the "box" after all cuts in Primary Analysis
- •6.9 events expected from γ Calibration
- 5 of them not consistent with Gaussian distribution of ER Background

 4 of the 5 non-Gaussian events (1 of lowest energy and 3 near upper energy band) are removed by cuts developed in the Secondary Analysis

• Only 1 non-Gaussian event survives both Primary and Secondary cuts (>15keVr, S2/S1 = 2.7σ away from NR centroid)

NR Energy scale: use a constant 19% Quenching Factor

Er = Ee/Leff · Se/Sr = S1tot (pe)/3.0 pe/keV/0.19*0.54*0.93

2 – 12 KeVee → 4.5 –27 KeVr

The events in the WIMP search box

- We think the 5 non-gaussian events are not likely WIMP events
 - No1 coincidence requirement is met because of noise glitch
 - ➡No 2, 6, 8, 10
 - clustered in lower part
 - The expected nuclear recoil spectrum for both neutron and WIMP falls exponentially where as not in this case.

XENON10 Experimental Upper Limits Spin Independent case

- Upper limits on the WIMPnucleon cross section derived with Yellin Method (PRD 66 (2002))
 - No bg subraction
 - 8.8 ×10⁻⁴⁴ cm² Max Gap (4.5-15.5keVr)

for a WIMP of mass 100 GeV/ c^2

Factor of 2 below best previous limit (CDMSII)

For lower WIMP mass (35 GeV)→ 4.5×10⁻⁴⁴ cm² Factor of 10 lower than best limit

XENON10 WIMP Search Results for SD Interactions

- natural Xe: ¹²⁹Xe, 26.4 %, spin 1/2, ¹³¹Xe, 21.2%, spin 3/2
- use shell-model calculations by Ressel and Dean [PRC 56, 1997] for $\langle S_n \rangle$, $\langle S_p \rangle$
- upper limits: Yellin Maximal Gap method, no background subtraction

Summary

• XENON10: First Result http://arxiv.org/abs/0706.0039, submitted to PRL

- ⇒upper limit to Spin Independent WIMP-nucleus cross section
 - 4.5 x 10⁻⁴⁴ cm² at 35 GeV
- ⇒upper limit to Spin Dependent WIMP-n cross section
 - 5.2 x 10⁻³⁹ cm² at 35 GeV

