Low energy solar neutrino detectors with scintillators

Molybdenum Observatory Of Neutrinos

http://ewi.npl.washington.edu

Ryuta Hazama Dept. of Phys. & OULNS, Osaka Univ.
For the MOON Collaboration
MOON is a “hybrid” solar ν & $\beta\beta$ experiment

Experimental evidences for oscillations in the ν_{atm}, ν_{solar} & ν_{reactor} strongly indicate ν have mass and mixing, but tell only Δm^2

The absolute ν mass

Δm_{solar}

Δm_{atm}

normal

inverted

$\langle m_{\nu} \rangle \sim 0.01-0.06 \text{ eV}$

LMA region

Single and double beta decay

$\sqrt{\Delta m_{\text{atm}}^2}$

(0.35 to 1.3)

Current 0$\nu\beta\beta$ limit (68% C.L.)

0.23 eV

WMAP
What’s next

Why perform low-energy solar neutrino experiments?

• Next I SNO 2nd phase
 - Status of maximal mixing
 - Matter effects
• Next I KamLAND reactor: Δm^2 determination

• Next II Low energy: challenge θ_{12}
 - 99.99% of solar neutrinos $E < 5$ MeV
 - Redundancy + improvement: Identify the unexpected
 - Vacuum osc.
 - Luminosity constraint + $[^{7}\text{Be}]$ 5% + [p-p] 1-3%

Bahcall & Pena-Garay
hep-ph/0305159
Why ν_{solar} below 1 MeV

^{100}Mo

^{176}Yb
Low Energy exps: ES, CC

Small ES uncertainty

\[
[X]_{\nu-e} \sim P_{ee} + f(1-P_{ee})
\]

Better sensibility

\[
[X]_{CC} \sim P_{ee}
\]
+ p-p (pep) measurement

θ : Significant improvement

$\tan^2 \theta : 11\% \rightarrow 5\%$

and...

SSM independent at $< 0.01\%$

Bahcall & Pena-Garay
hep-ph/0305159
Exotic solutions

\[R(^{7}\text{Be}) + 2R(\text{pp}) \sim 2 \cdot 0.2 \]

MOON: their ratio is independent of the B(GT)
Real-time \textit{pp} solar-ν detector

<table>
<thead>
<tr>
<th>Detectors</th>
<th>Target</th>
<th>Detection Mechanism</th>
<th>Mass(T)</th>
<th>Threshold (keV)</th>
<th>SSM Rates/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOON</td>
<td>100Mo</td>
<td>Solid/Liquid Scintillator</td>
<td>3.3 of 100Mo</td>
<td>168</td>
<td>399 \textit{pp}, 129 7Be</td>
</tr>
<tr>
<td>LENS</td>
<td>176Yb</td>
<td>Loaded Liquid Scintillator</td>
<td>10 Yb(nat)</td>
<td>301,445</td>
<td>146 \textit{pp}, 140 7Be</td>
</tr>
<tr>
<td>LENS</td>
<td>115In</td>
<td>Loaded Liquid Scintillator</td>
<td>4 In(nat)</td>
<td>118</td>
<td>365 \textit{pp}</td>
</tr>
<tr>
<td>InP</td>
<td>115In</td>
<td>Solid state detector</td>
<td></td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>SIREN</td>
<td>160Gd</td>
<td>Loaded Liquid Scintillator</td>
<td>10 Gd(nat)</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>

Radiochemical ---> HYBRID(37Cl), 7Li (for pep & CNO)

ES XMASS, CLEAN, HERON, TPC, GENIUS etc....
Unique features for solar ν

- CC real-time spectroscopic detector
- Low threshold $E_{th} = 0.168$ MeV
- Large matrix element, $0^+ \rightarrow 1^+$
- Ground state transition - matrix element can be measured
- ^{100}Tc decay (3.2 MeV-β, 15 s) tag large solar-ν capture rates

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>-Q(MeV)</th>
<th>pp</th>
<th>^7Be</th>
<th>^{13}N</th>
<th>pep</th>
<th>^{15}O</th>
<th>^8B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{71}\text{Ga}^c$</td>
<td>0.236</td>
<td>70.8</td>
<td>35</td>
<td>3.7</td>
<td>2.9</td>
<td>5.8</td>
<td>12.9</td>
<td>132</td>
</tr>
<tr>
<td>$^{100}\text{Mo}^d$</td>
<td>0.168</td>
<td>639</td>
<td>206</td>
<td>22</td>
<td>13</td>
<td>32</td>
<td>27</td>
<td>965</td>
</tr>
</tbody>
</table>

Charged-Current sub-MeV Real-Time:

LENS: Low Energy Neutrino Spectroscopy

Method
- charged current (CC) transition (inverse β-decay) to excited level (ν_e – only!)
- low-energy threshold: pp-, Be-7, pep,...
- ν_e – tag to discriminate against background
- ν_e – target (=Yb, In) loaded into liquid scintillator

\[E_e = E_{\nu e} - E_{\text{thr}} \]

$\nu_e + (A,Z) \Rightarrow e^- + (A,Z+1)^* \quad \text{delay} \quad (A,Z+1) + \gamma$
The major BG

$^{100}\text{Mo}; \text{accidental coincidence } 2\nu\beta\beta \rightarrow 10^{19}$ y

$^{115}\text{In}; \text{that of the single } \beta \text{ decay } \rightarrow 4 \times 10^{14}$ y

The accidental rate $\propto (R_{\beta\beta})^2$ or R_{β}^2, ΔT, (N_0/K)

$(R_{\beta\beta})^2$ is smaller by a factor 10^{-8} than R_{β}^2

ΔT for ^{100}Mo is longer by 3×10^6 than that for ^{115}In

N_0/K for ^{100}Mo with two β; smaller by $10^{-5} \sim 10^{-4}$

than ^{115}In with $\beta-\gamma$

^{100}Mo better than ^{115}In by a several orders of magnitude

^{176}Yb uses 50 ns delayed soft (~ 0.1 MeV) γ-rays for tagging

^{100}Mo uses 16 s delayed hard (~ 1.5 MeV) β-rays
Requirements for MOON

- Large volume/mass of 100Mo $M \sim 1$ ton
- Two β coin. $\Delta t \sim$ ns for $\beta\beta$, $\Delta t \sim 1$-30s solar-ν.
- Dynamic range $E_\beta \sim 0.1$-40 MeV
- Energy resolution FWHM $\Delta E \sim 0.12/(E \text{ MeV})^{1/2}$
 - 7% for 3MeV ov$\beta\beta$.
- Position resolution $x \sim y \sim z = 2$-3 mm. $1/K \sim 10^{-9}$.
- Purity 0.1 ppt 10^{-3} Bq/ton for U, Th isotops.
Ongoing R&D:

• Mo Loaded Liquid Scintillator
 0.3 - 0.7% Mo by weight
 ~3.5 \times 10^3 photons/MeV

• Wavelength shifting fiber-readout

 $\Delta E \sim 2E^{-1/2} \sim 11\%$ at 3MeV
 $\Delta X \sim 0.8 \ E^{-1/2} \sim 0.5$cm

Need to increase photon yield by 2.5

• Hybrid(SciFi&Sci) detector

 Photon yields check

Anticipate ~2 year R&D, then freeze detector design
Hybrid detector

1. Position read-out by fibers with 2.2 m – 2.2 m - 0.4 mm
2. Energy read-out by 2–dimensional plane scintillator with
 \(E \) resolution; \(\sigma \sim 2\% \), FWHM \(\sim 4.5\% \) including the Mo film.
3. Modest volume with enriched Mo and modest cost of MA / PM

One unit 2.2 m – 2.2 m – 2.2 m : 257 modules
One module 2.2 m – 2.2 m – 7.6 mm
PL 31.3 x 16.5 x 3 cm3

PMT 2” (H1161)

137Cs

LED & optical fiber
Multi-p.e. fit
^{137}Cs Compton edge

PL 12 \square 100 \square 1.5cm3
EL-V; NIMA302(1991) 304

$^{137}\text{Cs}(478\text{keV}) \sim 5736\text{photon}$
$\sim 4/18? \square \text{Q.E.(0.22)} \sim 280\text{ p.e.}$

PMT 2"(H1161) \square 4
FWHM $\sim 12\%$
(7% @ 3MeV)

PMT 31.3 \square 16.5 \square 3cm3
1 PMT
4 PMT

FWHM $\sim 12.6\% (348\text{p.e.})$
We can measure the energy by using Scintillator.

We can measure the position by using “Scintillation-Fiber”.

Size; Plastic Scintillator ~ 50cm × 50cm

100Mo foil ~ 30cm × 30cm
MOON-I design

Good energy photon collection!

Scintillation Fiber readout (multi channel readout)
GEANT Simulation

Energy loss of Mo-foil

50 \square 50cm2 100Mo

Hybrid detector
(PL + SciFi)

0.4 mm (x,y)

$\varepsilon_{\max}(E_{th}=0) \sim 28 \%$ with 6.6 mg/cm2
(previously 20% with 50 mg/cm2)
Summary

• Physics Objectives of low energy (Low-E) solar-ν well founded and defined

 Ideal Wrap up for 35y Solar-ν program

• MOON & LENS are both real-time Low-E CC experiment and complementary to each other to tackle in many issues.

• MOON is the **HYBRID** detector! **the key!**

 Multi-purpose(ββ, solar-ν, SN-ν) & SciFi(position)+Sci(energy)

• High position resolution and adequate time window for two β rays reduce all kinds of correlated and accidental BG.

• Following R&D, freeze the detector design, MOON-I will start soon
Welcome to MOON !!!