Neutrino Oscillation Studies with the Fermilab NuMI beam: Episode III

- Historical Introduction: Pre-history, Episodes I and II
- Physics Motivation
- Off-axis Beams
- Backgrounds and Detector Issues
- Sensitivity of NuMI Off-axis Experiments
Pre-history

Stage: Japan, early 1960’s

Progress in Theoretical Physics: many papers by Nagoya group (Sakata and Co.), Kyoto group and others addressing issues:

- Fundamental symmetries of Nature
- Conserved quantum numbers
- Leptons-hadrons symmetry
- Bold predictions

Not enough experimental input/feedback, Second neutrino just barely discovered

MNS:

\[\nu_1 = \cos \theta \nu_e + \sin \theta \nu_\mu \]
\[\nu_2 = -\sin \theta \nu_e + \cos \theta \nu_\mu \]
Neutrino Mixing Leads to Interference Effects (Oscillations)

Amplitude

\[
\begin{bmatrix}
 l_\alpha \\
 l_\beta
\end{bmatrix}
\]

Components of the initial state have different time evolution
\[\Rightarrow \Psi(t) \odot \Psi(0)\]

Amplitude \[\sum_i\]

\[
A = \sum_i U_{\alpha i}^* e^{-i m_i^2 L / 2E} U_{\beta i}
\]

3-slit interference

Experiment: mass difference \[\Leftrightarrow\]
difference in optical path length
Young Experiment

Three slit interference experiment

$$A \sim e^{ikL_1} + e^{ikL_2} + e^{ikL_3}$$

$$I = |A|^2$$

$I(x)$ - interference pattern is a result of phase differences due to optical path differences
Neutrino Oscillations Primer

- \(P(\nu_\alpha \rightarrow \nu_\beta) = 0 \) if all masses are equal i.e. \(\Delta m^2_{ij} = 0 \) Neutrino oscillations are sensitive to mass differences only.

- \(P(\nu_\alpha \rightarrow \nu_\beta) \) oscillates as a function of \(L/E \)

- \(P(\nu_\alpha \rightarrow \nu_\beta) \geq 0 \) for \(\alpha \neq \beta \) Appearance experiment.

- \(P(\nu_\alpha \rightarrow \nu_\alpha) \leq 1 \) : disappearance experiment

- \(\sum_\beta P(\nu_\alpha \rightarrow \nu_\beta) = 1 \) : total number of neutrinos is conserved

- If \(U_{\alpha i} \) is complex then \(P(\nu_\alpha \rightarrow \nu_\beta) \neq P(\nu_\beta \rightarrow \nu_\alpha) \) hence T (or CP) violation

- Possible Majorana phases do not contribute to oscillations
Episode I: Before the “New Era”

Theory:
• Neutrino mass differences 1-100 eV²
• Neutrino mixing matrix similar to quarks (small or very small mixing angles)

Experiment:
• No evidence for neutrino oscillations in accelerator (BEBC, CDHS, CHARM, CCFR) or reactor (Bugey, Gosgen) experiments
• Confusing ‘solar neutrino problem’

New Era started by **“SuperK revolution”:**
• Neutrinos have mass, mass differences are very small
• Neutrino mixing angles are very large
Episode II: elucidation

Two frequencies of oscillations, large mixing angles, at least two of them:

- $\Delta m_{12}^2 \sim 7(?) \times 10^{-5}$ eV2
- $\theta_{12} \sim 35^\circ$
- Super K, SNO, KamLand

- $\Delta m_{13}^2 \sim 1.5 - 4 \times 10^{-3}$ eV2
- $\theta_{12} \sim 45^\circ$
- SuperK, K2K, MINOS, OPERA, ICARUS

Dawn of physics beyond the Standard Model

Interference of these two amplitudes may lead to relatively large CP-violating effects.
Neutrinos vs Standard Model

Whereas

- There is a major effort to complete the Standard Model (Higgs search)
- There is a broad front of experiments looking for possible deviations from the Standard Model (SUSY searches, B-physics experiments, g-2, EDM, ...)

The first evidence for physics beyond the standard model is here:
- Neutrino mass and oscillations

Where does it lead us?
- Just an extension (additional 9? 7? Parameters)?
- First glimpse at physics at the unification scale? (see-saw??)
- Extra dimensions?
- Unexpected? (CPT violation???)
Surprising pattern of mixing angles: WWSS?

• We have large mixing angles. How very interesting... I thought that mixing angles tend to be small... Hmm.. $\sin^2 2\theta_{23}$ is very close to 1.

$$\nu_{\mu,\tau} \approx \frac{1}{\sqrt{2}} (\nu_2 \pm \nu_3)$$

Maximal mixing \leftrightarrow symmetry. What is this new symmetry of Nature?

• We have $\sin^2 2\theta_{12}$ and $\sin^2 2\theta_{23}$ large, yet $\sin^2 2\theta_{13}$ rather small. How very interesting... How small is it, really? What makes it so small? Protected by some new symmetry?? What symmetry?
Three outstanding questions
AD 2003

• Neutrino mass pattern:

This?

Or that?

• Electron component of $\nu_3 (\sin^2 2\theta_{13})$

• Complex phase of $s \leftrightarrow CP$ violation in a neutrino sector
 $\leftrightarrow (?)$ baryon number of the universe
\(\beta \) and \(0\nu\beta\beta \) decay experiments and mass hierarchy

- Coupling primarily to \(\nu_1 \) and \(\nu_2 \)
- In case of inverted hierarchy \(m \sim 50 \text{ meV} \) required. Challenging..
- In case of normal hierarchy required mass sensitivity in a few meV range. Tough!
- Want to know the mass pattern
The key: $\nu_\mu \rightarrow \nu_e$ oscillation experiment

$$P(\nu_\mu \rightarrow \nu_e) = P_1 + P_2 + P_3 + P_4$$

$$P_1 = \sin^2 \theta_{23} \sin^2 \theta_{13} \left(\frac{\Delta_{13}}{B_\pm} \right)^2 \sin^2 \frac{B_\pm L}{2}$$

$$P_2 = \cos^2 \theta_{23} \sin^2 \theta_{12} \left(\frac{\Delta_{12}}{A} \right)^2 \sin^2 \frac{AL}{2}$$

$$P_3 = J \cos \delta \left(\frac{\Delta_{12}}{A} \right) \left(\frac{\Delta_{13}}{B_\pm} \right) \cos \Delta_{13} L \sin \frac{AL}{2} \sin \frac{B_\pm L}{2}$$

$$P_4 = J \sin \delta \left(\frac{\Delta_{12}}{A} \right) \left(\frac{\Delta_{13}}{B_\pm} \right) \sin \Delta_{13} L \sin \frac{AL}{2} \sin \frac{B_\pm L}{2}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_\nu};$$

$$A = \sqrt{2}G_F n_e;$$

$$B_\pm = |A \pm \Delta_{13}|;$$

$$J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$$

$$P = f(\sin^2 2\theta_{13}, \delta, \text{sgn}(\Delta m_{13}^2), \Delta m_{12}^2, \Delta m_{13}^2, \sin^2 2\theta_{12}, \sin^2 2\theta_{23}, L, E)$$

3 unknowns, 2 parameters under control L, E, neutrino/antineutrino

Need several independent measurements to learn about underlying physics parameters
Observations

\[|s|^2 = |U_{e3}|^2 = \sin^2 \theta_{13} \approx \frac{1}{4} \sin^2 2\theta_{13} \approx \frac{1}{2} \sin^2 \theta_{\mu e} \]

- First 2 terms are independent of the CP violating parameter \(\delta \)
- The last term changes sign between \(\nu \) and \(\nu' \)
- If \(\theta_{13} \) is very small (\(\leq 1^\circ \)) the second term (subdominant oscillation) competes with 1st
- For small \(\theta_{13} \), the CP terms are proportional to \(\theta_{13} \); the first (non-CP term) to \(\theta_{13}^2 \)
- The CP violating terms grow with decreasing \(E_{\nu} \) (for a given \(L \))
- CP violation is observable only if all angles \(\neq 0 \)
- Two observables dependent on several physics parameters: need measurements at different \(L \) and \(E \)
Telling the Mass Hierarchy: Neutrino Propagation in Matter

- Matter effects reduce mass of ν_e and increase mass of $\bar{\nu}_e$

- Matter effects increase Δm^2_{23} for normal hierarchy and reduce Δm^2_{23} for inverted hierarchy for neutrinos, opposite for antineutrinos
Anatomy of Bi-probability ellipses

Observables are:
• P
• \overline{P}

Interpretation in terms of $\sin^2 2\theta_{13}$, δ and sign of Δm^2_{23} depends on the value of these parameters and on the conditions of the experiment: L and E

Minakata and Nunokawa, hep-ph/0108085
Varying the mixing angle..

- Parameter correlation: even very precise determination of P_{ν} leads to a large allowed range of $\sin^2 2\theta_{23} \Rightarrow$ antineutrino beam is more important than improved statistics.

- CP violation effects (size of the ellipse) $\sim \sin 2\theta_{13}$, overall probability $\sim \sin^2 2\theta_{13} \Rightarrow$ relative effect very large.

June 11, 2003 1st Yamada Symposium, NDM 2003
Adam Para, Fermilab
Recipe for an ν_e Appearance Experiment

- Large neutrino flux in a signal region
- Reduce background (neutral currents, intrinsic ν_e)
- Efficient detector with good rejection against NC background
- Large detector

Lucky coincidences:

- distance to Soudan = 735 km, Δm^2=0.025-0.035 eV2
- \[\frac{1.27 \Delta m^2 L}{E} = \frac{\pi}{2} \Rightarrow E = \frac{2.54 \Delta m^2 L}{\pi} \approx 1.6 - 2.2 \text{ GeV} \] => 'large' cross section
- Below the τ threshold! (BR(τ-e)=17%)
ν_e Appearance Counting Experiment: a Primer

$$P = \frac{\#\text{of } \nu_\text{e} \text{ cand.} - \varepsilon \nu_\text{e}^{\text{beam}} - \eta \text{NC}}{\varepsilon \int dE \Phi_\nu (E) \sigma^{CC}_{\nu} (E) P_{\nu_\mu \rightarrow \nu_\text{e}} (E, 100\%)}$$

$$P_{\text{sens}}^{90\%\text{CL}} = \frac{1.28 \sqrt{\varepsilon \nu_\text{e}^{\text{beam}}} + \eta \text{NC}}{\varepsilon \int dE \Phi_\nu (E) \sigma^{CC}_{\nu} (E) P_{\nu_\mu \rightarrow \nu_\text{e}} (E, 100\%)}$$

Systematics:
- Know your expected flux
- Know the beam contamination
- Know the NC background*rejection power (Note: need to beat it down below the level of ν_e component of the beam only)
- Know the electron ID efficiency

This determines sensitivity of the experiment
Off-axis NuMI Beams: unavoidable byproduct of MINOS experiment

- Beam energy defined by the detector position (off-axis, Beavis et al)
- Narrow energy range (minimize NC-induced background)
- Simultaneous operation (with MINOS and/or other detectors)
- ~ 2 GeV energy:
 - Below τ threshold
 - Relatively high rates per proton, especially for antineutrinos
- Matter effects to amplify to differentiate mass hierarchies
- Baselines 700 - 1000 km
NuMI Challenge: “have” beam, need a new detector

- Surface (or light overburden)
 - High rate of cosmic μ’s
 - Cosmic-induced neutrons
- But:
 - Duty cycle 0.5×10^{-5}
 - Known direction
 - Observed energy > 1 GeV

Principal focus: electron neutrinos identification
- Good sampling (in terms of radiation/Moliere length)

Large mass:
- maximize mass/radiation length
- cheap

Off-axis collaboration: Letter of Intent 2002,
Proposal in preparation (October 2003), forthcoming workshops at Fermilab: July 10-12, September 11-13
NuMI Off-axis Detector

Low Z imaging calorimeter:
- Glass RPC or
- Liquid or solid scintillator

Electron ID efficiency ~ 40% while keeping NC background below intrinsic ν_e level

Well known and understood detector technologies

Primarily the engineering challenge of (cheaply) constructing a very massive detector

How massive??

50 kton detector, 5 years run =>
- 10% measurement if $\sin^2 2\theta_{13}$ at the CHOOZ limit, or
- 3σ evidence if $\sin^2 2\theta_{13}$ factor 10 below the CHOOZ limit (normal hierarchy, $\delta=0$), or
- Factor 20 improvement of the limit
Backgrounds Summary

- ν_e component of the beam
 - Constrained by ν_μ interactions observed in the near MINOS detector (π)
 - Constrained by ν_μ interactions observed in the near MINOS detector (μ)
 - Constrained by pion production data (MIPP)
- NC events passing the final analysis cuts (π^0?)
 - Constrained by neutrino data from K2K near detector
 - Constrained by the measurement of EM 'objects' as a function of E_{had} in the dedicated near detector
- Cosmics
 - Cosmic muon induced 'stuff' overlapped with the beam-induced neutrino event
 - (undetected) cosmic muon induced which mimics the 2 GeV electron neutrino interaction in the direction from Fermilab within 10 μsec beam gate

- Expected to be very small
- Measured in a dedicated setup (under construction)
Beam-Detector Interactions

- Optimizing beam can improve signal
- Optimizing beam can reduce NC backgrounds
- Optimizing beam can reduce intrinsic ν_e background
 - Easier experimental challenge, simpler detectors
- # of events \sim proton intensity \times detector mass
 - Allocate the resources to maximize the product, rather than individual components
NuMI and JHF experiments in numbers

<table>
<thead>
<tr>
<th></th>
<th>NuMI Off-axis</th>
<th>JHF to SK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 kton, 85% eff,</td>
<td>Phase I, 5 years</td>
</tr>
<tr>
<td></td>
<td>5 years, 4×10^{20} pot/y</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>After cuts</td>
<td>all</td>
</tr>
<tr>
<td>After cuts</td>
<td></td>
<td>After cuts</td>
</tr>
<tr>
<td>ν_μ CC (no osc)</td>
<td>28348</td>
<td>10714</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>1.8</td>
</tr>
<tr>
<td>NC</td>
<td>8650</td>
<td>4080</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>9.3</td>
</tr>
<tr>
<td>Beam ν_e</td>
<td>604</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>31.2</td>
<td>11</td>
</tr>
<tr>
<td>Signal ($\Delta m_{23}^2 = 2.8/3 \times 10^{-3}$, NuMI/JHF)</td>
<td>867.3</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>307.9</td>
<td>123</td>
</tr>
<tr>
<td>FOM (signal/$\Delta bckg$)</td>
<td>40.7</td>
<td>26.2</td>
</tr>
</tbody>
</table>

June 11, 2003
1st Yamada Symposium, NDM 2003
Adam Para, Fermilab
Two phase program

Phase I (~ $100-200 M, running 2007 - 2014)
• 50 kton (fiducial) detector with $\varepsilon \sim 35-40\%$
• 4×10^{20} protons per year
• 1.5 years neutrino ($6000 \nu_\mu \text{ CC, 70-80\% 'oscillated'}$)
• 5 years antineutrino ($6500 \nu_\mu \text{ CC, 70-80\% 'oscillated'}$)

Phase II (running 2014-2020)
• 200 kton (fiducial) detector with $\varepsilon \sim 35-40\%$
• 20×10^{20} protons per year (new proton source?)
• 1.5 years neutrino ($120000 \nu_\mu \text{ CC, 70-80\% 'oscillated'}$)
• 5 years antineutrino ($130000 \nu_\mu \text{ CC, 70-80\% 'oscillated'}$)
Combination of different baselines: NuMI + JHF extends the range of hierarchy discrimination to much lower angles mixing angles.
Physics related to neutrino masses

A quest for a neutrino mass spectrum \leftrightarrow mass generation mechanisms:
- Neutrinos have non-zero mass
- $0.05 < m_3 < 0.23$ eV
- Mass differences too small to be detectable by direct measurements \Rightarrow interference experiments [remember $\Delta m_K = m(K^0_S) - m(K^0_L)$]

A search for fundamental symmetries:
- Conserved 'family lepton' number
- Conserved lepton number
- CP conservation in a lepton sector \leftrightarrow leptogenesis \leftrightarrow baryon number of the Universe \leftrightarrow our existence
- CPT conservation
- New, hereto unknown symmetries of Nature?
Conclusions

- Neutrino Physics is an **exciting field** for many years to come.
- Most likely **several experiments** with different running conditions will be **required** to unravel the underlying physics. Healthy complementary program is shaping up (see Ichikawa-san).
- **Fermilab/NuMI beam** is **uniquely matched** to this physics in terms of **beam intensity, flexibility, beam energy, and potential source-to-detector distances** that could be available.
- **Important element** of the **HEP program in the US** for the next 20 years.
NuMI Of-axis Sensitivity for Phases I and II

We take the Phase II to have 25 times higher POT \times Detector mass

Neutrino energy and detector distance remain the same
Two body decay kinematics

At this angle, 15 mrad, energy of produced neutrinos is 1.5-2 GeV for all pion energies ➔ very intense, narrow band beam

'On axis': $E_\nu = 0.43 E_\pi$

\[
p_L = \gamma (p^* \cos \theta^* + \beta E^*)
\]
\[
p_T = p^* \sin \theta^*
\]
Signal and background

Fuzzy track = electron
Clean track = muon (pion)
Background examples

\[\nu_\mu \text{ CC - with } \pi^0 - \text{muon} \]

\[\text{NC - } \pi^0 - 2 \text{ tracks} \]
Sources of the ν_e background

At low energies the dominant background is from $\mu^+ \rightarrow e^+ + \nu_e + \nu_\mu$ decay, hence

- K production spectrum is not a major source of systematics
- ν_e background directly related to the ν_μ spectrum at the near detector

$\nu_e / \nu_\mu \sim 0.5\%$
Mass Textures and θ_{13} Predictions, Examples

<table>
<thead>
<tr>
<th>Texture</th>
<th>θ_{13}</th>
<th>$\sin^2 2\theta_{13}$</th>
<th>Perturbations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degenerate neutrinos, spontaneously broken flavor SO(3)</td>
<td>$r \left(\frac{\Delta m^2_{\text{sun}}}{\Delta m^2_{\text{atm}}} \right)^{1/2}$</td>
<td>≈ 0.064</td>
<td>$\epsilon \sim \delta$</td>
</tr>
<tr>
<td>Degenerate neutrinos, democratic mass matrix</td>
<td>$r \left(\frac{m_e}{m_\mu} \right)^{1/2}$</td>
<td>≈ 0.019</td>
<td></td>
</tr>
<tr>
<td>Inverted hierarchy</td>
<td>$\approx \frac{\Delta m^2_{\text{sun}}}{\Delta m^2_{\text{atm}}}$</td>
<td>≈ 0.001</td>
<td>$\eta \sim \delta$</td>
</tr>
<tr>
<td>Normal hierarchy</td>
<td>$\approx \frac{\Delta m^2_{\text{sun}}}{\Delta m^2_{\text{atm}}}$</td>
<td>$\ll 0.001$</td>
<td>$\eta \sim \delta$</td>
</tr>
</tbody>
</table>

Altarelli, Feruglio, hep-ph/0206077