Muon-Induced Background & Neutrinoless Double Beta Decay

Andrew Hime and Dong-Ming Mei Physics Division, Los Alamos National Laboratory

Second Joint Meeting of the Nuclear Physics Division of the APS & JPS Kapalua, Hawaii, September 18-22, 2005

September 19, 2005

- Muon Flux & Distributions
 - Definition of Depth
 - Input for Muon-Induced Background

Muon-Induced Fast Neutrons

- Data v.s. Simulation
- Fluxes & Distributions
- Depth Sensitivity Relation (DSR)
 - Example for Majorana Module
 - Verification

Summary

Muon Energy & Angular Distributions

Material Dependence of Neutron Production Rate

Neutron Production Rate

Correction to LVD Data for Quenching

Corrected LVD Neutron Energy Spectrum

Neutron Flux at Underground Sites

Differential Neutron Energy Spectrum

Neutron Multiplicity

Neutron Angular & Lateral Distributions

Majorana Layout

Simulate Module 57 x 1.05 kg Enriched ⁷⁶Ge + 10 cm polyethylene + 10 cm Cu + 40 cm Pb

Depth Sensitivity Relation for Double Beta Decay

