Neutrino Properties Which Probe Physics Beyond the Standard Model

> A.B. Balantekin University of Wisconsin

Hawaii05 Double Beta Decay and Neutrino Mass Workshop Neutrino Magnetic Moment

$$L_{_{\rm int}} = \frac{1}{2} \overline{\psi}_{_{j}} \sigma_{_{\alpha\beta}} (\beta_{_{ij}} + \varepsilon_{_{ij}} \gamma_{_{5}}) \psi_{_{i}} F^{_{\alpha\beta}} + h.c.$$

$$\mu_{ij} \equiv \left| \beta_{ij} - \varepsilon_{ij} \right|$$

$$\mu_{v}^{2}(v_{l}, L, E_{v}) = \sum_{j} |\sum_{i} U_{li} e^{-iE_{v}L} \mu_{ij}|^{2}$$

Neutrino mixing: $|v_f\rangle = \Sigma_i$ $U_{fi} |v_i\rangle$

Magnetic moment operator: µ

$$\sigma \propto \Sigma_{i} |\langle v_{i} | \mu | v_{e} \rangle |^{2} = \langle v_{e} | \mu^{t} \mu | v_{e} \rangle$$

Dirac magnetic moment: $\mu^t = \mu$

Majorana magnetic moment: $\mu^T = -\mu$

$$\mu_e^2 = \sum_j \left| \sum_k U_{ek} e^{-iE_k L} \mu_{jk} \right|^2$$

diagonal Dirac magnetic moment

$$\mu_e^2 = \sum_j |U_{ej}|^2 \; |\mu_j|^2$$

Neutrino Magnetic Moment

Standard Model

Combined solar, reactor, and atmospheric experiments imply a definite limit on neutrino magnetic moment

 $\mu \ge$ (4 x 10⁻²⁰) μ_B

Physical Processes with a Neutrino Magnetic Moment

Plasmon decay

Spin-flavor precession

Neutrino decay

$$\frac{d\sigma}{dT} = \frac{G_F^2 m_e}{2\pi} \left[(g_V + g_A)^2 + (g_V - g_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 + (g_A^2 - g_V^2) \frac{m_e T}{E_\nu^2} \right]$$
 weak
$$+ \frac{\pi \alpha^2 \mu_\nu^2}{m_e^2} \frac{1 - T/E_\nu}{T}$$
 magnetic

 $g_v = 2 \sin^2 \theta_{W} + 1/2$

 $g_A = \begin{cases} +1/2 \text{ for electron neutrinos} \\ -1/2 \text{ for electron antineutrinos} \end{cases}$

Future possibilities?

Beta-beams?

SNS?

Observational limits on μ_{ν}

$\nu_{\text{R}}\text{'s}$ are produced in magnetic moment scattering

- Core-collapse supernovae: Lattimer and Cooperstein; Barbieri and Mohapatra. If μ_v is sufficiently large the proto-neutron star can cool faster since righthanded components are sterile. $\mu \ge 10^{-12}\mu_B$ would be inconsistent with the observed cooling time of SN1987A.
- Early Universe: Morgan.
 Dirac v_R increase the effective degrees of freedom altering neutrino counting through big-bang nucleosynthesis yields.
 (Not so for the Majorana case since antiparticles are already counted).

Bound from the red-giant stars (Raffelt)

A large enough neutrino magnetic moment implies enhanced plasmon decay rate: $\gamma \rightarrow vv$. Since the neutrinos freely escape the star this is turn cools a red giant star faster delaying helium ignition.

 $\mu_v = (3 \times 10^{-12}) \mu_B$

Balantekin, Loreti, Pakvasa, Raghavan. Spin-flavor precession changes neutrino helicity. If the neutrinos are of Majorana type this yields a solar antineutrino flux.

Kamland and SNO bounds on solar antineutrino flux:

 $\phi_{antineutrino} \leq 3 \times 10^{-4} \phi_{B8-neutrino}$

Spin-flavor precession

$$i\frac{d}{dt} \begin{pmatrix} \mathbf{v}_{e_L} \\ \mathbf{v}_{\mu_L} \\ \mathbf{v}_{e_R} \\ \mathbf{v}_{\mu_R} \end{pmatrix} = \begin{pmatrix} H_L & BM^{\dagger} \\ BM & H_R \end{pmatrix} \begin{pmatrix} \mathbf{v}_{e_L} \\ \mathbf{v}_{\mu_L} \\ \mathbf{v}_{e_R} \\ \mathbf{v}_{\mu_R} \end{pmatrix}$$

$$H_{L} = \begin{bmatrix} \frac{\Delta m^{2}}{2E} \sin^{2}\theta + a_{e} & \frac{\Delta m^{2}}{4E} \sin 2\theta \\ \frac{\Delta m^{2}}{4E} \sin 2\theta & \frac{\Delta m^{2}}{2E} \cos^{2}\theta + a_{\mu} \end{bmatrix}$$
$$M = \begin{bmatrix} \mu_{ee} & \mu_{e\mu} \\ \mu_{\mu e} & \mu_{\mu\mu} \end{bmatrix}$$

Dirac neutrinos

 $H_R = H_L(a_e = 0 = a_\mu)$

$$a_e = \frac{G_F}{\sqrt{2}} (2N_e - N_n), \quad a_\mu = -\frac{G_F}{\sqrt{2}} N_n$$

$$H_{\text{Maj}} = \begin{bmatrix} a_e & \frac{\Delta m^2}{4E} \sin 2\theta & 0 & \mu^* B \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{2E} \cos 2\theta + a_\mu & -\mu^* B & 0 \\ 0 & -\mu B & -a_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \mu B & 0 & \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{2E} \cos 2\theta - a_\mu \end{bmatrix}$$

Majorana neutrinos

E_{ν}	SFP	MSW
2.50	0	0.07
3.35	0.05	0.10
5.00	0.10	0.13
8.00	0.15	0.18
13.00	0.20	0.22

Locations of the SFP and MSW resonances in the sun

$$\begin{split} \frac{d^2}{dt^2} \nu_e^{(L)} + \left(\phi^2 + i \frac{d\phi}{dt} + \Delta^2 + (\mu B)^2\right) \nu_e^{(L)} \\ &+ \mu B \sqrt{2} G_F N_n \nu_\mu^{(R)} = 0. \end{split}$$

$$P(\nu_e \rightarrow \nu_e) = \frac{1}{2} - \frac{1}{2} \cos 2\theta_v (1 - 2P_{\rm hop}),$$

for the limiting case of $N_n = 0$, one gets

$$P_{\rm hop}(\mu B \neq 0) = P_{\rm hop}(\mu B = 0) \exp\left\{\frac{i}{\pi} \int_{r_0}^{r_0^*} dr \frac{\delta m^2}{2E} \left[\frac{(\mu B)^2}{\sqrt{\zeta^2(r) - 2\zeta(r)\cos 2\theta_v + 1}}\right]\right\}.$$

A.B. Balantekin and C. Volpe, Phys. Rev. D72, 033008 (2005)

Solar magnetic fields

- Standard Solar Model requires B < 10⁸ G.
- Helioseismology: I f B > 10⁷ G, sound speed profile would deviate from the observed values Turck-Chieze.
- Solar neutrino flux variations with heliographic latitude may imply magnetic fields Caldwell.

A.B. Balantekin, P. Hatchell, F. Loreti, Phys. Rev. D41, 3583 (1990)

SNO Salt Results, Balantekin and Yuksel, PRD 68, 113002 (2003)

Balantekin, et al., PLB 613, 61 (2005)

• $\mu = 10^{-11} \mu_B$

- B = 10⁵ G
- δm² = 8 x 10⁻⁵ eV²

• $tan^2\theta = 0.4$

For these parameters the difference between MSW only and SFP+MSW is less than 10⁻⁵.

A.B. Balantekin and C. Volpe, Phys. Rev. D72, 033008 (2005)

Conclusions

• Neutrino magnetic moment is known to be in the range (9 x 10⁻¹¹) $\mu_B \ge \mu \ge (4 \times 10^{-20}) \mu_B$ The width of this range represents physics beyond the standard model.

• The effect of μ_{ν} on solar neutrino flux is miniscule. Even a field as large as $10^5\,G$ and magnetic moment $10^{-11}\,\,\mu_B$ would change the observed solar neutrino flux in part per $10^5.$