US-Japan Seminar on Double-Beta Decay and Neutrino Mass

Materials Purity: Ultra-Low-Background Copper, ICP-MS Assay, and Lead Surface Preparation for the Majorana Project

Craig Aalseth

Pacific Northwest National Laboratory Richland, WA, USA

September 19, 2005

Pacific Northwest National Laboratory U.S. Department of Energy

Outline

- Motivation
- Electroformed Copper
- ICP-MS Copper Assay
- Lead Surface Preparation
- Summary

Materials are Critical

Depth is only part of the equation

- Must also have
 - Pure materials
 - Environmental gamma shielding
 - Environmental neutron shielding
 - Residual muon shielding
- Muon-induced secondary neutrons can dominate under good conditions

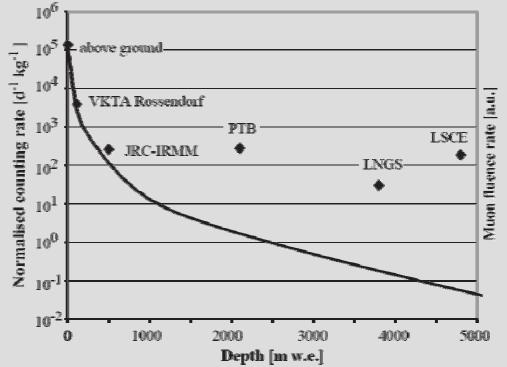


Fig. 1. The integral background counting rate from 40 to 2700 keV divided by the mass of the Ge-crystal for the best HPGe-detectors in some CELLAR laboratories. The solid line shows the muon fluence rate in arbitrary units normalised to the background counting rate above ground. All detectors have only passive shielding.

M. Laubenstein et al. | Applied Radiation and Isotopes 61 (2004) 167–172 Pacific Northwest National Laboratory U.S. Department of Energy 3

Estimated backgrounds in the $0\nu\beta\beta$ -decay ROI

Background Source			nd Net Rate ortant Isoto		Total Est. Background (per t-y)	
			Counts in ROI per t-y			
		68Ge	^ю Со			
Germanium (100 day exp)	Gross	2.54	1.22			Crystals are
	Net	0.01	0.02		0.03 🗲	
		208TI	214Bi	60Co		clean
Inner Mount	Gross	0.12	0.03	0.26		
	Net	0.01	0.00	0.00	0.01	
Cryostat	Gross	0.77	0.16	0.58		
	Net	0.22	0.04	0.00	0.26 🗲	Dominated b
Copper Shield	Gross	2.28	0.30	0.02		
	Net	0.64	0.06	0.00	0.70	
Small Parts	Gross	0.18	0.04	0.34		See talk by
	Net	0.02	0.01	0.00	0.03	
External Sources (6000 mwe)		muons	cosmic activity	(a,n)		T. Hossbach
	Gross	0.03	1.33	0.003	-	Must go
	Net	0.003	0.18	0.003	0.18 🗲	
2v ββ -decay					< 0.01	deep
		TOTA	LSUM		1.21	

- "Gross" indicates level of activity before any analysis cuts are applied.
- "Net" indicates level of activity after cuts have been applied.

Copper Motivation

- Commercial high-purity copper is an attractive material for constructing ultra-low-background spectrometers.
- Thermal, mechanical, electrical, and vacuum properties enable vacuum cryostats, crystal mounts, heat conductors, electrical interconnects, etc.
- When even higher purity is required, additional electrolytic and chemical purification can be combined with the final fabrication step, resulting in "electroformed" copper parts of extreme purity.
- This process can be done underground, providing a potential way to eliminate cosmogenic activation products seen in copper with above-ground exposure.
- Additional purity improvements seem possible with modest additional chemistry.

Ultra-Low-Background Electroformed Copper

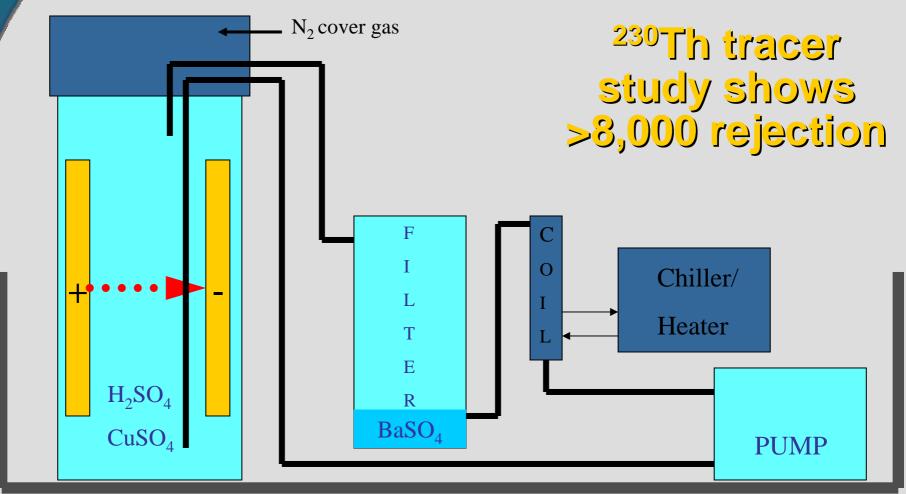
Electroformed cups shown have wall thickness of only 250 $\mu m!$

Strength equal to OFHC

- Technology has small physical footprint for production
- Can be easily formed into thin, low-mass parts
- Purity established with IGEX* experience, development continues

*(International Germanium EXperiment)

Low-Background Electroformed Copper Key Elements


Low-background detector and electroformed cryostat during assembly

- Semiconductor-grade acids
- Glassware-free handling
- Copper sulfate purified by recrystallization
- Baths circulated with continuous microfiltration to remove oxides and precipitates
- Continuous barium scavenge removes radium
- Cover gas in plating tanks reduces oxide formation
- Periodic surface machining during production minimizes dendritic growth

Electroforming Overview

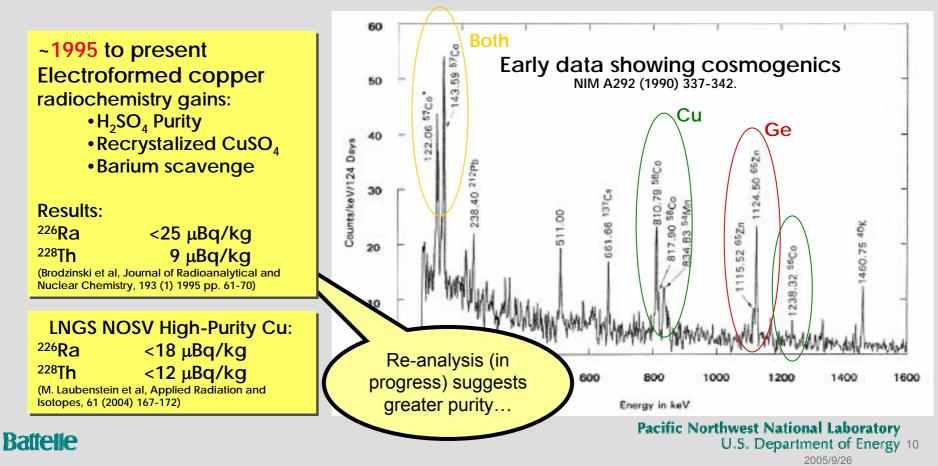
Secondary Tank

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 8 2005/9/26

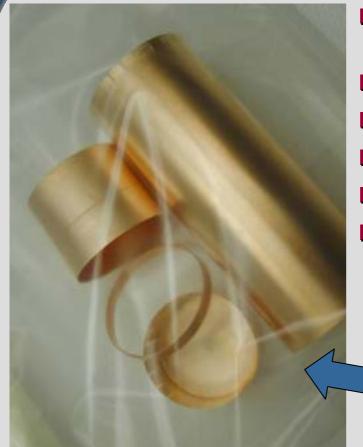
Plating Bath Process Parameters

- Plating is done onto polished, cleaned, stainless steel mandrels in the shape of the desired parts
- Current density is ~40 mA/cm²
- Plating rate is ~0.05 mm/h
- BaSO₄ collects in the microfiltration stage and acts as radium scavenge
- CoSO₄ was added as a holdback carrier for the cosmogenic ^{56,57,58,60}Co present in the starting copper
- HCI and Thiourea affect copper crystal nucleation and grain size

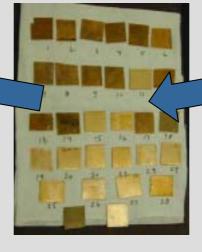

Constituent	Concentration
CuSO ₄	188 g/l
H ₂ SO ₄	75 g/l
HCI	30 mg/l
Thiourea	3 mg/l
CoSO ₄	1 mg/l
BaSo ₄	~1 mg/l

Battelle C. E. Aalseth et al., Phys. Rev. C 59, 2108 (1999).

Chemistry & Cosmogenics



- Further improvements were made in the chemistry for electroformed Cu production
- U, Th progeny reduced substantially (100x, 10x) over early work [Bro95]
- Underground production would totally eliminate cosmogenic ⁶⁰Co, other lessimportant cosmogenics
- Current chemistry development continues (tracer studies, mass balance, etc.)


Electroformed Copper Surface Cleaning & Passivation

Battelle

- Goal was to find copper cleaning process to replace destructive nitric acid etch
- Surface passivation was also desired
- Experiments inspired by CUORE conversations
- Tested several oxide removal methods
- Tested ~30 passivation chemistries
- H₂O₂-based cleaning & citric acid passivation were final result

Pacific Northwest National Laboratory U.S. Department of Energy 11

Examples from MEGA Detector

Pacific Northwest National Laboratory U.S. Department of Energy 12 2005/9/26

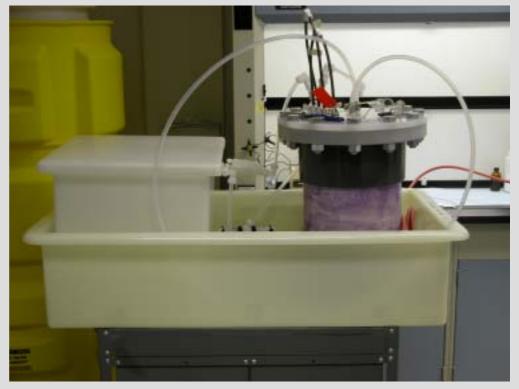
Examples from MEGA Detector

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 13 2005/9/26

Electroforming R&D is Ongoing

0		1		
0				


Pacific Northwest National Laboratory U.S. Department of Energy 14 2005/9/26

LANL-PNNL Underground Cu Experiment

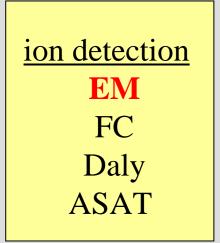
- Equipment underground at WIPP
- LANL, Majorana team will operate
- Will demonstrate cosmogenic suppression

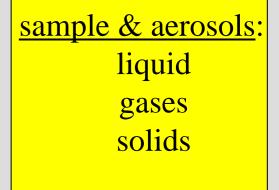
Pacific Northwest National Laboratory U.S. Department of Energy 15 2005/9/26

ICPMS Copper Purity Assay

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy


Motivation



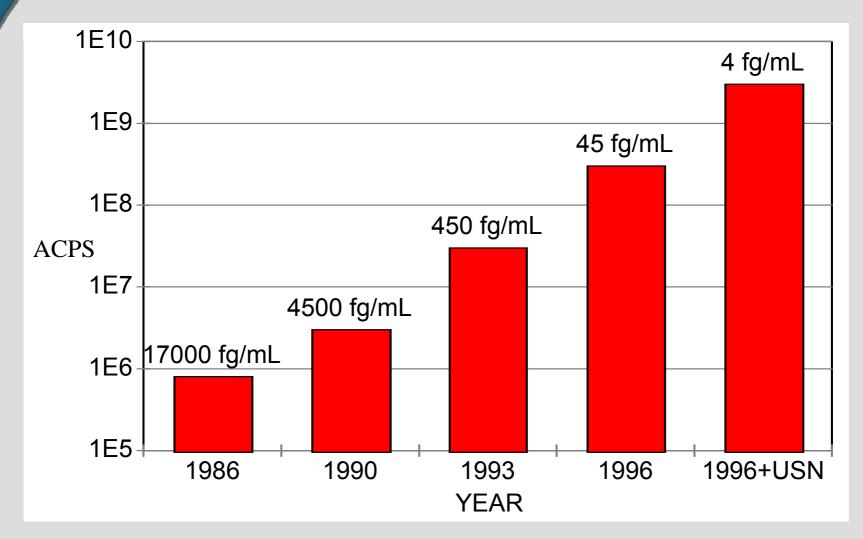
- Direct radiometric methods require large sample mass (~10 kg), long count time (~3 months), have reached limit
- Producing material for next-generation detector (Majorana) will require careful QA of even small parts
- Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) has good potential for reaching radiopurity goals

Basic ICP/MS

PNNL ICP/MS Equipment

Pacific Northwest National Laboratory U.S. Department of Energy 19 2005/9/26

Sample Introduction Methodologies



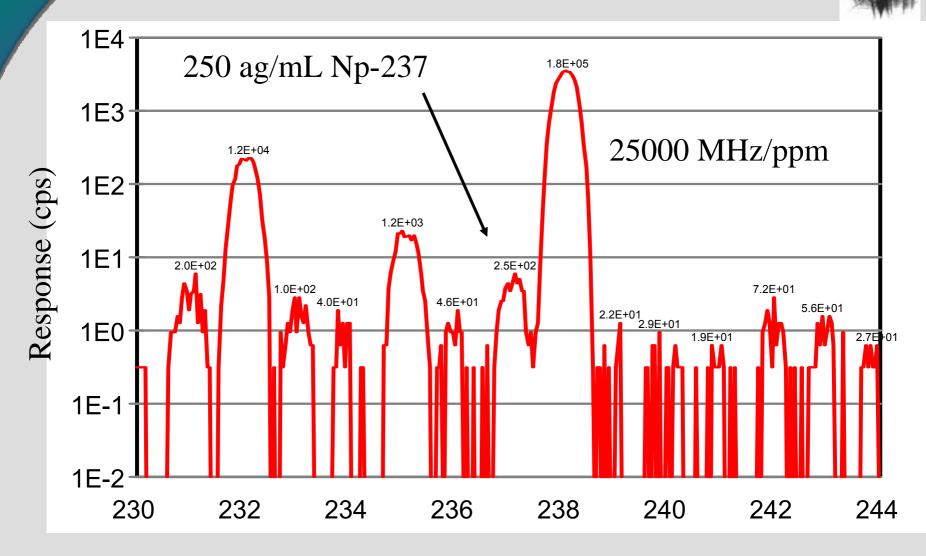
Pacific Northwest National Laboratory U.S. Department of Energy 20 2005/9/26

DETECTION IMPROVEMENT IN ICP/MS

Pacific Northwest National Laboratory U.S. Department of Energy 21 2005/9/26

Battelle

ICP-MS DETECTION RANGES Aqueous Standards


Battelle

WEIGHT	PREFIX	²³⁸ U ATOMS/ml	
10 ⁻³ (ppt)	Milli	2.53x10 ¹⁸ ←]
10 ⁻⁶ (ppm)	Micro	2.53x10 ¹⁵	NORMAL
10 ⁻⁹ (ppb)	Nano	2.53x10 ¹²	ICP-MS RANGE
10 ⁻¹² (ppt)	Pico	2.53x10 ⁹	
10 ⁻¹⁵ (ppq)	Femto	2.53x10 ⁶	
10 ⁻¹⁸ (pp?)	Atto	2530	THIS WORK
10 ⁻²¹ (pp??)	Zepto	2.53	
10 ⁻²⁴ (pp???)	Guaca	0.00253	

Pacific Northwest National Laboratory U.S. Department of Energy 22 2005/9/26

Direct Atto-gram/mL Detection

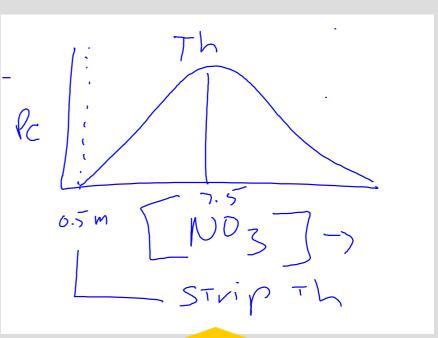
amu

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 23

Copper Sample Preparation

- Nominal 1g copper sample is placed in 75ml clear Teflon bottle
- 20ml 7.5M HNO₃ (<0.05pg/ml) is added</p>
- Tracer (²²⁹Th or ²³⁰Th) is added at about 10% of expected ²³²Th value
- Gentle heat is applied until dissolution is complete
- Copper goes to +2 state



Thorium Separation

- Column is 200-400 mesh anion resin
- Column is first washed with H₂O
- Column is conditioned with 7.5M HNO₃
- Sample is loaded (20 ml 7.5M HNO₃)

Battelle

- Wash copper from column void volume (7.5M HNO₃)
- Elute (strip) thorium with 0.5M HNO₃
 - Elute in 3 ml directly to MS

chemist explains to me how this works on my whiteboard...

> Pacific Northwest National Laboratory U.S. Department of Energy 25 2005/9/26

ICP-MS Instrument

- Condition instrument with 0.5M HNO₃ until stable background is achieved
- Switch in eluent (also 0.5M HNO₃) and wait for signal to stabilize
- Measure (integrate) mass response during eluent ionization
 - Typically ~6 integration periods of 30 seconds each
 - Provides 10 seconds on each of three mass peaks (230.0, 230.5, 232.0) for each integration period

Data Reduction

Subtract instrument background from eluent signal

• This is from 0.5M HNO₃ reagent and is small

Subtract process blank from eluent signal

- This is from an eluent blank prepared without copper and is larger
- Quote result (pg/g) based on tracer

Convert to μBq/kg equivalent ²³²Th (4x multiplier)

First Copper Result

- Two 1-g samples of MEGA inner-can copper were analyzed
- Sample #1 (0.882 g)
 - The process blank was 6.0 ± 0.3 pg/g
 - The sample yielded a value of
 - 7.3 ± 0.7 pg/g (gross)
 - or 1.2 ± 0.8 pg/g (net)
 - This is a net 232Th activity of $4.9 \pm 2.9 \mu Bq/kg$
- Sample #1 (0.936 g)

Battelle

- The process blank was 5.7 ± 0.3 pg/g
- The sample yielded a value of
 - 7.0 ± 0.6 pg/g (gross)
 - or 1.3 ± 0.7 pg/g (net)
- This is a net ²³²Th activity of $5.2 \pm 2.8 \mu Bq/kg$

Cu ICP-MS Next Steps

Sensitivity

- Preliminary result appears to be first positive indication of Th in Cu
- Anion column cleanup of 7.5M HNO₃ planned
- Sub-boiling distillation to further clean HNO_3 if necessary
- Instrument background now 6x lower

Documentation

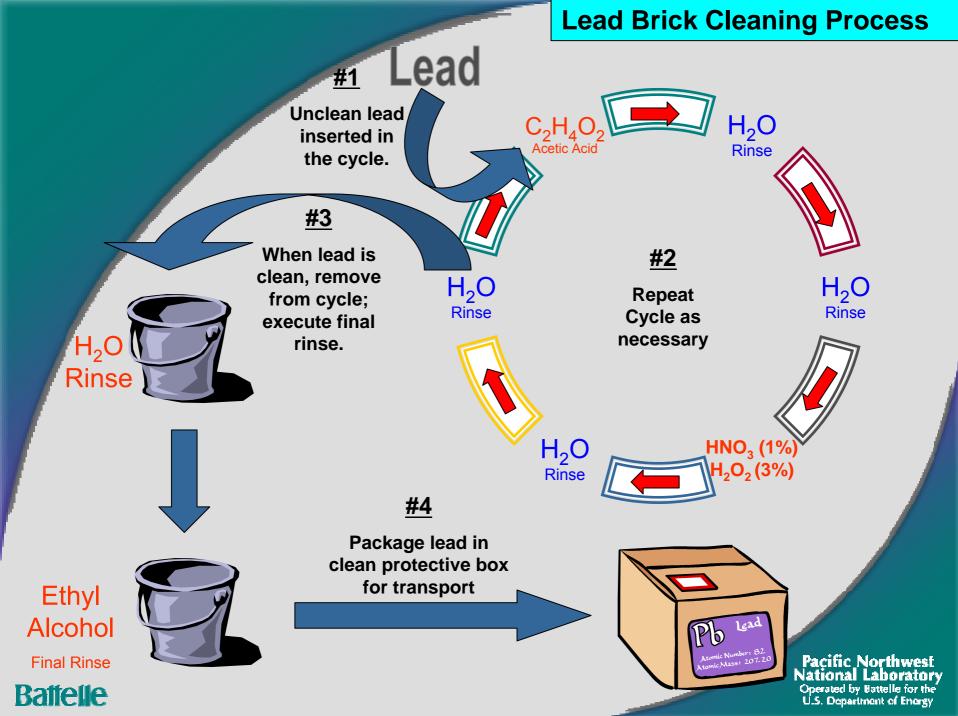
- Process will eventually transition into "service center" activity
- Will benefit from QA, standardized reporting

Priority

- Repeat process blanks
- Repeat and extend copper measurements (starting stock, other Cu)
- Test reagent cleanup chemistry

Pb Cleaning

"Spanish" Lead~1542


- Ancient lead is desired to avoid ²¹⁰Pb backgrounds, present in all modern lead
- Materials are usually recovered needing extensive surface cleaning
- Even new lead may need oxide removal for safety reasons

"New" Lead ~1950 to ~1980

S.S.

Acetate Formation

Acetate Removal

Final Result

Summary

Ultra-Low-Background Electroformed copper is an established technology, improvements continue

R&D to reach Majorana assay targets underway

- ICP-MS expected to reach Majorana target sensitivity for ²³²Th in copper
- Surface α , β assay for Pb and Cu are planned
- Underground electroforming R&D in progress in two underground locations
 - Soudan (SBIR partner Jim Reeves)
 - WIPP (LANL Majorana team, Steve Elliott, et al.)

Surface preparation chemistry being developed for lead

Acknowledgements

Kate Antolick, Tom Farmer, Erin Fuller, Eric Hoppe, Todd Hossbach, Jeremy Kephart, Tashi Parsons-Moss, John Orrell, John Smart

