Recent Results from NEMO 3 Experiment

H. Ohsumi (Saga U.) @ US-Japan Seminar, September 16-20, 2005, Maui, Hawaii

NEMO3 Collaboration

CENBG, IN2P3-CNRS Bordeaux University, **France** Charles University, Praha, Czech Republic CTU, Praha, Czech Republic **INEL**, Idaho Falls, **USA** INR, Moscow, Russia **IReS**, IN2P3-CNRS Strasbourg University, **France** ITEP, Moscou, Russia JINR, Dubna, Russia Jyvaskyla University, Finland LAL, IN2P3-CNRS Paris-Sud University, France LSCE, CNRS Gif sur Yvette, France LPC, IN2P3-CNRS Caen University, France Manchester University, Great-Britain Mount Holyoke College, USA RRC kurchatov Institute, Moscow, Russia Saga university, Saga, Japon UCL, London, Great-Britain

PLAN

1.08 year

- Introduction
- NEMO3
 - description, performances
 - \succ results $2\beta 2\nu$
 - \succ results $2\beta 0\nu$: data phase 1
 - Fight against radon
- SuperNEMO (if I have time ...a little bit)
- Concluding Remarks

Philosophy of NEMO experiment

Expected values of <m_v>**from neutrinos oscillations parameters**

Pascoli and Petcov, hep-ph/0310003 (best fit $v_{atm} + v_{sol}$)

Quasi-Degenerate (QD): $\langle m_v \rangle > 50 \text{ meV}$

Inverted Hierarchy (IH): 15 meV < <m.> < 50 meV

Normal Hierarchy (NH):

 $< m_v > < 5 meV$

2β could give the absolute neutrino mass

(hep-ph/0503246 A.Strumia and F.Vissani)

The Location of the NEMO3

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18cm) Neutron shield:

> 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron)

 $\implies Able to identify e^-, e^+, \gamma and \alpha$

AUGUST 2001

How detect signals and tag the background ?

Identification of e, γ , α

Tracking (Identification e/others)

Delayed (<700 μ s) α track

Calorimeter $\epsilon(\gamma) \sim 50\%$ (@0.5MeV)

Possible for tagging ey, eyyy, eyyy, ...

Time of flight $\sigma_t \sim 300 \text{ps}(@1\text{MeV})$

External Background rejection

➤ Magnetic Field (Identification e⁻/e⁺)

3~5% e⁻/e⁺ confusion @ 1~7MeV

Study of Background Process

 e^{214} Bi Tagged by e(γ)α (~164µs)

(²¹⁴Bi->²¹⁴Po->²¹⁰Pb)

• 208 Tl ey, eyy, eyyy, with γ (2.6MeV)

or Taggd by $e(\gamma) \alpha$ (~300ns)

(²¹²Bi->²¹²Po->²⁰⁸Pb)

Neutron Crossing e (4~8MeV)

e⁺e pairs⁻ Double Compton Compton + Möller

ββ decay isotopes in NEMO-3 detector

Sources preparation

Water tank

ββ events selection in NEMO-3

Typical $\beta\beta2\nu$ event observed from ¹⁰⁰Mo

Background events observed by NEMO-3...

Electron crossing > 4 MeV Neutron capture

Electron + N γ 's ²⁰⁸Tl (E γ = 2.6 MeV)

Electron + α delay track (164 µs) $^{214}\text{Bi} \rightarrow ^{214}\text{Po} \rightarrow ^{210}\text{Pb}$

Performance of the detector

Tracking Detector:

- > 99.5 % Geiger cells ON
- > Vertex resolution:
- 2 e⁻ channels (482 and 976 keV) using ²⁰⁷Bi sources at 3 well known positions in each sector $\sigma_{\perp} (\Delta Vertex) = 0.6 \text{ cm}$ $\sigma_{//} (\Delta Vertex) = 1.3 \text{ cm}$ (Z=0)
- e+/e- separation with a magnetic field of 25 G ~ 3% confusion at 1 MeV

<u>Calorimeter</u>:

- > 97% of the PMTs+scintillators are ON
- Energy Resolution: calibration runs (every ~ 40 days) with ²⁰⁷Bi

	Ext. Wall 5" PMTs	Int.Wall 3" PMTs
FWHM (1 MeV)	14%	17%

Daily Laser Survey to control gain stability of each PM

<u>Time Of Flight</u>:

- > Time Resolution ($\beta\beta$ channel) \approx 250 ps at 1 MeV
 - ToF (external crossing e^-) > 3 ns

external crossing e⁻ totaly rejected

Expected Performance of the detector has been reached $2\beta 2\nu$ decay results in NEMO-3

¹⁰⁰Mo $2\beta 2\nu$ preliminary results

(Data Feb. 2003 - Dec. 2004)

7.37 kg.y

 $T_{1/2} = 7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (syst)} \times 10^{18} \text{ y}$

$2\beta 2\nu$ preliminary results for other nuclei

Background subtracted

Search for $2\beta 0\nu$ decay in NEMO-3

Nuclear Matrice Elements Ref: Simkovic (1999), Stoica (2001), Suhonen (1998,2003), Rodin (2005), Caurier (1996)

ββ0v Analysis: Background Measurement

NEMO-3 can measure each component of its background !

External Background ²⁰⁸Tl (PMTs)

Measured with (e^-, γ) external events

~ $10^{-3} \beta\beta0\nu$ -like events year⁻¹ kg ⁻¹ with 2.8<E₁+ E₂<3.2 MeV

External Neutrons and High Energy gamma Measured with (e⁻,e⁻)_{int} events with E₁+E₂ > 4 MeV

 $\lesssim 0.02 \ \beta\beta0\nu$ -like events year⁻¹ kg ⁻¹ with 2.8<E₁+E₂<3.2 MeV

Only 2 $(e^{-},e^{-})_{int}$ events with $E_1 + E_2 > 4$ MeV observed after 260 days of data (without boron)

{ 4253 keV (26 Mar. 2003) 6361 keV (8 Nov. 2003)

In agreement with expected background

 $\Lambda (\mu \mathbf{R} \alpha / k)$

 $\Lambda (\mu \mathbf{R} \alpha / k)$

➢ ²⁰⁸ Tl impurities inside the foils	sources	from(e [−] ,Nγ)	HPGe meas.
Measured with $(e^{-}, 2\gamma)$, $(e^{-}, 3\gamma)$ events coming from the	¹⁰⁰ Mo	92 ± 18	< 110
	metal.		
$\sim 0.1 \beta\beta0v$ -like events year ⁻¹ kg ⁻¹ with 2.8 <e<sub>1+E₂<3.2 MeV</e<sub>	¹⁰⁰ Mocomp	. 115 ± 13	< 100
	⁸² Se	316 ± 46	400 ±100
	In agreement with HPGe measurements		

> ¹⁰⁰Mo $\beta\beta2\nu$ decay $T_{1/2} = 7.7 \ 10^{18} \text{ y}$ (SSD) ~ 0.3 $\beta\beta0\nu$ -like events year⁻¹ kg ⁻¹ with 2.8<E₁+E₂<3.2 MeV

Limit on Majoron and V+A Phase 1 (Feb. 2003 – Sept. 2004: 1.08 y of data) with radon bkg (limits @ 90% CL)

 Limit on V+A

 100 Mo:
 $T_{1/2} (\beta \beta 0 \nu V + A) > 2.3 \ 10^{23} y$
 $\lambda < (1.5 - 2.0) \ 10^{-6}$ $\lambda < 3.2 \ 10^{-6}$

 Tomoda (1991), Subnen (1994)
 Tomoda (1991)

Radon effect and fight against radon

a $\beta\beta0\nu$ -like event due to Radon from the gas

Run 2220, event 136.604, May 11th 2003

ββ0ν Analysis: Background Measurement

Radon in the NEMO-3 gas of the wire chamber

Due to a tiny diffusion of the radon of the laboratory inside the detector A(Radon) in the lab ~15 Bq/m³

~ 1 $\beta\beta$ 0v-like events/year/kg with 2.8 < E₁+E₂ < 3.2 MeV

Radon is the dominant background today for ββ0ν search in NEMO-3 !!!

NEMO Tent for Free-Radon air Installation

May 2004 : Tent surrounding the detector

Free-Radon Air factory

Starts running Oct. 4th 2004 in Modane Underground Lab. 1 ton charcoal @ -50°C, 7 bars

Activity: A(²²²Rn) < 15 mBq/m³ !!! Flux: 125 m³/h a factor 1000

(Without Radon)

NEMO-3 Expected sensitivity

BackgroundBackground: negligibleInternal Background: 208 Tl : $60 \mu Bq/kg \text{ for }^{100}$ Mo
 $300 \mu Bq/kg \text{ for }^{82}$ Se 214 Bi : < 300 $\mu Bq/kg$ 82 Se 214 Bi : < 300 $\mu Bq/kg$ 82 Se 214 Bi : < 300 $\mu Bq/kg$ $\sim 0.1 \text{ count } kg^{-1} \text{ y}^{-1}$ with $2.8 < E_1 + E_2 < 3.2 \text{ MeV}$

ββ2ν¹⁰⁰Mo: $T_{1/2} = 7.14 \ 10^{18} \ y$ ~ 0.3 count kg⁻¹ y ⁻¹ with 2.8<E₁+E₂<3.2 MeV

Nuclear Matrice Elements Ref: Simkovic (1999), Stoica (2001), Suhonen (1998, 2003), Rodin (2005), Caurier (1996)

From NEMO 3 to SuperNEMO

Expected values of <m_v>**from neutrinos oscillations parameters**

(hep-ph/0503246 A.Strumia and F.Vissani)

From NEMO to SuperNEMO

Factor 100 on the $\beta\beta(0\nu)$ period T_{1/2}, reach few 10²⁶ years

Light Majorana neutrino exchange: $\langle m_v \rangle \sim 50 \text{ meV}$

internal contaminations in ²⁰⁸Tl and ²¹⁴Bi to be improved by a factor of 10

SuperNEMO preliminary design

Plane geometry

Source (40 mg/cm²) 12m², tracking volume (~3000 channels) and calorimeter (~1000 PMT)

Modular (~ 5 kg of enriched isotope/module)

5 m

Top view

Side view

Water shield

Need of cavity of ~ 60m x 15m x15m Possible in Gran Sasso or in Modane if a new cavity

Concluding Remarks

- ► NEMO3 is running for ≈ 5 years
- ➢ What we learnt with NEMO
 - to identify and measure all the sources of background
 - to build a very low-background detector
 - to prove the reliability of the chosen techniques
 - to purify $\beta\beta$ isotopes by removing parents of ²¹⁴Bi, ²⁰⁸Tl
 - to remove background due to Radon (recently)
- technique can be extrapolated R&D program for Super NEMO

Thank you