$0\nu\beta\beta$ -decay - Current Results, Future Implications

- Motivation, ν mass, and $0\nu\beta\beta$
- Current Results and Considerations
- Next generation experiments
- Future Considerations
- Summary

Motivation for $0\nu\beta\beta$ -decay experiments

The recent discoveries of solar, reactor, and atmospheric neutrino oscillations provide a compelling argument for new $0\nu\beta\beta$ -decay experiments with increased sensitivity.

 $0\nu\beta\beta$ -decay probes fundamental physics.

- It is the only technique able to determine if neutrinos might be their own anti-particles, or Majorana particles.
- If Majorana particles, $0\nu\beta\beta$ offers the most promising method for determining the overall absolute neutrino mass scale.
- Tests one of nature's most fundamental symmetries, lepton number conservation.

Neutrino Masses and Flavor Content

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

US - Japan Seminar on Double Beta Decay and Neutrino Mass

† Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, Phys. Lett. B 586 198 (2004).

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

† Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, Phys. Lett. B 586 198 (2004).

 $0\nu\beta\beta\text{-decay}$ - Present Results, Future Implications

† Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, Phys. Lett. B 586 198 (2004).

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

† Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, Phys. Lett. B 586 198 (2004).

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

$0\nu\beta\beta$ -decay ν mass sensitivity

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

$0\nu\beta\beta$ -decay

There are a series of even-even nuclei, where single β -decay is energetically forbidden, but $\beta\beta$ -decay is allowed

$$2\nu\beta\beta$$
-decay: $2n \Rightarrow 2p + 2e^- + 2\nu_e$

 $0\nu\beta\beta$ -decay: If neutrinos are Majorana particles and have mass then

$0\nu\beta\beta$ -decay Searches - Current Results

$\left[T^{0\nu}_{1/2}\right]$	$^{-1} = G_{0\nu} \Big M$	$\left 0 v \right ^2 \left\langle m_{\beta\beta} \right\rangle$	² ∝ M	$\bullet \mathbf{t}_{exp} = \begin{bmatrix} \mathbf{E} \\ 0 \end{bmatrix}$	Best case, background
Isotope	Half-life (y)	<m<sub>v> (eV)</m<sub>	Exposure kg-yr	Background (cts/keV/kg-yr	Reference
Ca-48	$> 1.4 \times 10^{22}$	< 7.2 - 44.7	0.037	0.03	You91
Ge-76	$> 1.9 \times 10^{25}$	< 0.32 - 1	35.5	0.19	Kla01
Ge-76	$> 1.6 \times 10^{25}$	< 0.33 - 1.35	8.9	0.06	Aal02
Ge-76	$= 1.2 \times 10^{25}$	= 0.24 - 0.58	71.7	0.11	Kla04
Se-82	$> 1.9 \times 10^{23}$	< 1.3 - 3.2	0.68		Sar04
Zr-96	$> 1 \times 10^{21}$	< 16.3 - 40	0.0084		Arn98
Mo-100	$> 3.5 \times 10^{23}$	< 0.7 - 1.2	5.02	3.5×10^{-3}	Sar04
Cd-116	$> 1.7 \times 10^{23}$	< 2.2 - 4.6	0.15	0.03	Dan00
Te-128	$> 7.7 \times 10^{24}$	< 1.1 - 1.5	Geoch.	Geoch.	Ber93
Te-130	$> 1.8 \times 10^{24}$	< 0.2 - 1.1	10.85	0.18	Cap05
Xe-136	$> 4.4 \times 10^{23}$	< 2.2 - 5.2	4.84		Lue98
Nd-150	$> 3.6 \times 10^{21}$	< 4.9 - 17.1	0.015		Bar05

Typical "source" masses .5 - 10 kg

An Example - ⁷⁶Ge Measurement

Heidelberg-Moscow used five 86% enriched ⁷⁶Ge crystals with a total of 10.96 kg of mass and found:

 $T_{1/2} > 1.9 \text{ x } 10^{25} \text{ y } (90\% \text{CL})$

Klapdor-Kleingrothaus et al., Eur. Phys. J 12, 147 (2001)

Experimental Considerations

To measure extremely rare decay rates $(T_{1/2} \sim 10^{24} - 10^{27} \text{ years})$

- Large, highly efficient source mass
- Extremely low (near-zero) backgrounds in the $0\nu\beta\beta$ peak region
 - Requires ultra-clean radiopure materials
 - the ability to discriminate signal from background
- Best possible energy resolution
 - Minimize Ονββ peak ROI to maximize S/B
 - Separate 2νββ/Ονββ

Resolution and Sensitivity to $0\nu\beta\beta$

From Zdesenko, Danevich, Tretyak, J. Phys. G 30 (2004) 971

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

US - Japan Seminar on Double Beta Decay and Neutrino Mass

Additional Considerations

- Source serves as the detector
- Elemental (enriched) source to minimize active material.
- A large Q value faster $0\nu\beta\beta$ rate and also places the region of interest above many potential backgrounds.
- A relatively slow $2\nu\beta\beta$ rate helps control this irreducible background.
- Identifying the decay progeny in coincidence with the $0\nu\beta\beta$ decay energy eliminates potential backgrounds except $2\nu\beta\beta$.
- Event reconstruction, providing kinematic data such as opening angle and individual electron energy aids in the elimination of backgrounds and demonstration of signal (can possibly use $2\nu\beta\beta$)
- Good spatial resolution and timing information helps reject background processes.
- Demonstrated technology at the appropriate scale.
- The nuclear theory is better understood in some isotopes than others. The interpretation of limits or signals might be easier to interpret for some isotopes.

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

"Relative" Sensitivities

Using Rodin et al. Nucl. Matrix elements

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

 $\ensuremath{\mathsf{US}}$ - Japan Seminar on Double Beta Decay and Neutrino Mass

The Neutrino Matrix

DHP / DPF / DAP / DPB. JOINT STUDY ON THE FUTURE OF NEUTRINO PHYSICS

- 4 APS Divisions
 DNP, DPF, DAP, DPB
- 200+ members
- 7 Working Groups
- B. Kayser and S.
 Freedman co-chairs
- R.G.H. Robertson writing committee chair
- www.aps.org/neutrino

US - Japan Seminar on Double Beta Decay and Neutrino Mass

APS Multidivisional v Study and $0\nu\beta\beta$ -decay

- One of the three principal conclusions: WE RECOMMEND, AS A HIGH PRIORITY, A PHASED PROGRAM OF SENSITIVE SEARCHES FOR NEUTRINOLESS NUCLEAR DOUBLE BETA DECAY.
- Additional guidance
 - Initial "Phase 1" Goal: sensitivity to m_v in the "quasi-degenerate" region
 (≥ 100 meV).
 - Experiments will need ~200 kg of target mass, the actual quantity being dependent on specific experimental parameters.
 - Experiments should be scalable to a 1-ton-scale, with discovery potential near the atmospheric neutrino oscillation mass scale, that is about 45 meV.
 - The study identified the need to undertake multiple $0\nu\beta\beta$ experiments that use different isotopes and are based on different experimental techniques.

$0\nu\beta\beta$ -decay Searches - Efforts Underway

Collaboration	Isotope	Technique	Mass	Status	Talk at Workshop
CAMEO	Cd-116	CdWO ₄ crystals	1 t		•
CANDLES	Ca-48	60 CaF ₂ crystals in liq.	191 kg	Construction	Kishimoto
		scint			
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	100 kg		
COBRA	Cd-116,	CdZnTe detectors	10 kg	R&D	
	Te-130				
CUROICINO	Te-130	TeO ₂ Bolometer		Operating	Gutierrez
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Initial Const.	Gutierrez
DCBA	Nd-150	Nd foils & tracking	20 kg	R&D	
		chambers			
EXO200	Xe-136	Xe TPC	200 kg	Construction	Pocar
EXO	Xe-136	Xe TPC	1-10t	R&D	Pocar
GEM	Ge-76	Ge diodes in LN	1 t		
GERDA	Ge-76	Ge diodes in LN	15 kg	Construction	
		Seg. Ge in LN	35-40 kg	Construction	
			1 t	Future	
GSO	Gd-160	Gd ₂ SiO ₅ :Ce crystal	2t		
		scint. in liquid scint			
Majorana	Ge-76	Segmented Ge	180 kg	Proposed	Lesko
			1 t	Future	
NEMO3	Mo-100	Foils with tracking	6.9 kg	Operating	Ohsumi
	Se-82		0.9 kg		
SuperNEMO	Se-82	Foils with tracking	100 kg	Proposed	Lang
MOON	Mo-100	Mo sheets	200 kg	R&D	Nomachi
			1 t		
SNO ββ		suspended material		Feasibility	Hallin
Xe	Xe-136	Xe in liq. Scint.	1.56 t		
XMASS ββ	Xe-136	Liquid Xe	10 t		Moriyama

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

GERDA ⁷⁶Ge $0\nu\beta\beta$ -decay

- European effort at Gran Sasso
- Concept bare Ge diodes in a highpurity LN₂ shield
- Phase I
 - 15 kg 86% enriched ⁷⁶Ge
 - non-segmented (IGEX and H-M detectors)
 - Estimated Start Nov. 2006
- Phase II
 - ~25 kg of segmented detectors
 - Estimated start Late 2007
- Phase III
 - Scale towards 1 ton
- Majorana and GERDA believe that for a future large 500 - 1000 kg scale experiment, the experiments will likely combine using the best technology.

Figure 4: View of GERDA cross section from TIR tunnel. The shielding structure below the roof of the water tank might be not needed. September 17, 200

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

US - Japan Seminar On DOUDE Deta Detay and redunito riaSS

Future Challenges

Backgrounds and Scalability – Next generation experiments must strive for backgrounds in the $0\nu\beta\beta$ region of cnts/t-y.

- Requires materials with μ Bq/kg level radioimpurities.
 - Difficult to achieve sensitivity with direct radioassays
- Requires large scale cleanliness.
- "New background regimes", new background sources that could previously be ignored (see Hime's talk, this workshop)
- Signal and Background Characterizations
 - Reliably simulate the entire observed spectrum.
 - Demonstrate capability to measure the $2\nu\beta\beta$ spectrum
- Extracting the effective mass of the neutrino requires an understanding of the nuclear matrix elements.
 - Theoretical uncertainties are a major limitation -- a factor of 2-3 between techniques
 - much theoretical work is needed
 - Additional complementary experimental work may help

Reducing Backgrounds - Two Basic Strategies

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non "source" materials
 - Clean passive shield
 - Go deep reduced $\mu \text{'s}$ & related induced activities
- Utilize background rejection techniques
 - Energy resolution

- Active veto detector
- $0\nu\beta\beta$ is a single site phenomenon
- Many backgrounds have multiple site interactions
- Granularity [multiple detectors] Pulse shape discrimination (PSD)
- Single Site Time Correlated
 Segmentation
 Segmentation
- Tracking
- Angular correlations
- Ion Identification

Background reduction at the larger scale

- Many groups have built $0\nu\beta\beta$ -decay experiments at the few to 10 kg level. Need to scale this up to the 100s of kg level.
- Can utilize knowledge from groups that have demonstrated the construction of low-background, large-scale detectors underground: e.g. KamLAND, SNO, SAGE, GNO, Borexino CTF
 - SNO Acrylic Sphere, 30 t, 120 segments, < 2 $\mu\text{Bq/kg}$ ^{232}Th
 - SNO Neutral Current Detector Array of ³He proportional counters
 - -450 kg of material
 -300 detector segments
 -Activity 100 1000 x
 cleaner than best
 previous counters
 -Activity <= 6 µBq/kg ²³²Th

 $0\nu\beta\beta$ -decay - Present Results, Future Implications

Characterization of Signal and Background

Heidelberg-Moscow

Backgrounds for Majorana vs. Depth

At Sudbury depth, 6000 mwe, calculate that about 15-20% of the expected background in the ROI will be from μ induced activities in Ge and the nearby cryostat materials (dominated by fast neutrons).

$0\nu\beta\beta$ -decay Nuclear Matrix elements

• Extracting the effective mass of the neutrino requires an understanding of the nuclear matrix elements.

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left\langle m_{\beta\beta} \right\rangle^2$$

Two basic approaches – Shell Model and Quasiparticle Random Phase Approximation.

- Rodin et al. show that QRPA results tighten up (typically to ~20% uncertainty in half life):
 - When implementation differences are accounted for
 - One uses $\beta\beta(2\nu)$ to set the free parameter
- Recent shell model numbers are comparable (differ < factor of 2). But these calculations are still evolving.

RQRPA* and Shell Model Predictions

RQRPA: Rodin, Faessler, & Simkovic, nucl-th/0503063

$0\nu\beta\beta$ -decay Nuclear Matrix Comments

- The nuclear structure is a fascinating manybody problem, motivating important developments in nuclear structure theory, including Monte Carlo & Lanczos shell model techniques and quasiparticle RPA.
- Using compilations or averages of previous sequential calculations isn't a reasonable approach.
- Complementary experiments are being pursued.
 - Garcia et al. in 100 and 116 systems.
 - Schiffer et al. in pair transfer

Electron-Capture Branch of ¹⁰⁰Tc (A. Garcia et al.)

A bench-mark for testing 2bb-decay nuclear matrix element calculations

QRPA (Griffiths-Vogel, PRC **46**, 181 (1992)) predicts: B(GT, $0+ \rightarrow 1+$) = 1.75

Previous measurement: (Garcia et al, PRC **47**, 2910 (1993)) B(GT, $0+ \rightarrow 1+$) = 0.66 ±0.33

New measurement: (Sjue et al, DNP meeting **EF 9**) B(GT, $0+ \rightarrow 1+$) = 1.7 ±0.3 Difference between two experiments not understood. Experiment with trap at Jyvaskyla to come. The overlap is between a pair of correlated neutrons in the O⁺ ground state and a similar pair of protons in the final state.

For a nucleus such as ⁷⁶Ge the pairing correlations produce something like a BCS state.

Such correlations are probed by (t,p) or (p,t) transfer of correlated neutrons pairs or (³He,n) for protons.

N

But, there are two complicating issues:

1.) To what extent is the required range of the correlations in the 0^+ ground state similar in pair transfer to what is relevant in $(0v2\beta)$ decay? For (p,t) the range is the distance between the pair of neutrons in the triton. How does this compare with what is relevant in $(0v2\beta)$? Question for theorists!

2.) The other is a matter of reaction mechanism -there can be sensitivity to the microscopic orbits in (p,t) that could be different in $(0v2\beta)$. (some limited data.)

Summary and Outlook

- To get the maximum benefit from next generation measurements, additional theoretical and complementary experimental work on nuclear matrix elements needs to be vigorously pursued.
- A number of 100-200 kg scale experiments are under construction or preparing to submit proposals.
 - The U.S. NuSAG committee (a Joint NSAC-HEPAP sub-committee) has recently completed and issued recommendations for the U.S double beta decay program.
- Next generation $0\nu\beta\beta$ experiments should be able to:
 - Definitively test the Klapdor-Kleingrothaus claim in the 400 meV region.
 - Probe the quasi-degenerate neutrino mass region of 100 meV.
 - Demonstrate backgrounds that would justify scaling up to a 1-ton or larger detector.

U.S. Neutrino Scientific Assessment Group

Recommendation: The Neutrino Scientific Assessment Group recommends that the highest priority for the first phase of a neutrino-less double beta decay program is to support research in two or more neutrino-less double beta decay experiments to explore the region of degenerate neutrino masses ($\langle m_{\beta\beta} \rangle > 100$ meV). The knowledge gained and the technology developed in the first phase should then be used in a second phase to extend the exploration into the inverted hierarchy region of neutrino masses ($\langle m_{\beta\beta} \rangle > 10-20$ meV) with a single experiment.

Reviewed Five Experiments related to U.S. program. In terms of funding (alphabetical order) High priority: CUORE, EXO, Majorana Lower priority: MOON, Super - NEMO

See DOE NSAC Web Page for the Report.