Measuring $sin^2 2\theta_{13}$ with Reactor Antineutrinos

- Proposals with US Involvement -

θ_{13} from Reactor and Accelerator Experiments

reactor

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Clean measurement of θ_{13}
- No matter effects

mass hierarchy

CP violation

accelerator

matter

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} + 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} - 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} + 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} - 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] .$$

- $\text{sin}^2 2\theta_{13}$ is missing key parameter for any measurement of $~\delta_{\text{CP}}$

A Precision Measurement of $\theta_{\rm 13}$

Next-generation experiments will not measure CP violation but some values of δ_{CP} could be excluded.

Measuring θ_{13} with Reactor Antineutrinos

Precision Oscillation Measurement as a Function of Distance from Source

Signatures of θ_{13} in a Reactor Experiment

→ 3 baselines provide consistency checks and eliminate single point failure of experiment, in particular if the backgrounds are too high in near detector or unaccounted systematics in one of detectors

Proposals to Measure θ_{13} with Reactor Neutrinos

Proposals to Measure θ_{13} with Reactor Neutrinos

Double Chooz Sensitivity (2007-2012)

Braidwood Neutrino Experiment

Braidwood Setup

- Two 3.6 GW reactors
- near: 2x65 ton (fid vol), 270 m
- far: 2x65 ton (fid vol), 1510 m
- 180m shafts and detector halls (450 mwe) depth
- optimized distances

Braidwood Detector Concept

Detector Loading onto the Trailer

Spreader Ba

• Moving required for cross checks.

Gantry top bea

Cable Drum

Outer steel buffer oil containment (7m diameter)

- Inner acrylic Gd-Scint containment (5.2m diameter)
- 2-zone detector
- 1000 low activity glass 8" PMTs (25% coverage)

Goal: < 1 neutron background event/day/detector

Braidwoon **Braidwood Sensitivity and Discovery Potential** -2 10 Zeutrino Experim $\Delta m^2 (eV^2)$ 3 years, $\Delta m^2 > 2.5 \times 10^{-3} \text{ eV}^2$ 90% CL limit at $sin^2 2\theta_{13} < 0.005$ 3 σ discovery for sin²2 θ_{13} > 0.013 **Counting Only** 10 Shape Only 1.000 10⁻³ 10^{-2} 10^{-1} $Dm^2 = 2.5e-3 eV^2$ Sensitivity to $\sin^2 2\theta_{13}$ at 90% CL vs. Δm^2 sin²2q₁₃ 90% CL limit (1.28 s) count shape Uncertainties for 3 yr Data 0.100 combine Source of Uncertainty % **Relative Normalization for each** Near/Far Detector Pair 0.30.010 Far Detector Statistics 0.2Near Detector Statistics 0.04 Backgrounds 0.150.001 0.1 10 100 **Running Time (yrs)**

Karsten Heeger

Laboratory with Horizontal Tunnels

- Simplifying logistics: Build detectors outside before moving into tunnel.

- Swapping detectors: Eliminates most systematic errors. Helps understand backgrounds.

- Modular detectors: Phased approach, allowing rapid deployment, different configurations, and cross-calibration.

-Optimizing distance to reactors

Karsten Heeger

Development of Multi-Layer Detector Modules

Option A: horizontal, cylindrical modules

Detector Design Studies

Option B: vertical, upright modules

- multiple modules, easier to fabricate
- modular muon shielding with water tanks

Technical Challenges: Multi-Layer Acrylic Detectors

Movable Detector Modules in Underground Halls

- reduce systematics by swapping
- access to large overburden
- Daya Bay offers up to 1100 mwe overburden

Antineutrino candidate signal:

 $\overline{\nu}_e$ +p \rightarrow e⁺+n

Muon flux underground

Correlated Backgrounds

- Muon spallation

- ⁹Li

- Fast neutrons

Measuring ⁹Li

Muon flux low enough at mid and far sites so that we can measure ⁹Li production and subtract it.

[₽]Li ≝ 1.020

near: muon flux high, we cannot make sufficiently precise measurement of ⁹Li background, need calculation based on measurements at mid and far site

Ref: Daya Bay US LOI

Simulation - 80 Tons at Mid Site - 3 years

Fast Neutrons

Neutrons can leave prompt signal due to nuclear reaction in LS, then thermalize and capture on Gd

 \rightarrow coincidence signature

Past Experience: Chooz

Observed neutron rate: 45+2/hr Correlated background: ~1/day → Reduction of 10⁻³

Site	Reactor $\bar{\nu}_e$ Signal	Correlated neutron rate	Neutron background	
	(/day)	(/day)	Signal	
Near	1160	0.63	0.05%	
Mid	464	0.22	0.05%	
Far	116	0.03	0.03%	

Note: If a substantial fraction of Chooz background is due to ${}^{9}Li$ then these calculations are upper limits \rightarrow needs more MC studies.

Ref: Daya Bay US LOI

Muon System and Passive Shielding

Requirements

- Excellent muon tagging/tracking
- Low muon rates to measure muon-induced ⁹Li spectrum.
- >2m water shielding around detector against neutrons.

Example of Passive Shielding: Sand or Water

Active muon tracker

+ passive shielding

+ inner liquid scintillator detector

Systematic Errors in the Daya Bay θ_{13} Experiment

Reactor Power Uncertainty

2% uncorrelated error per reactor core

Baseline configuration		# cores	Uncertainty			
near	far	-	Power	Location	Total	
500	2000	4	0.08%	0.08%	0.11%	
500	2000	6	0.08%	0.06%	0.10%	
1000	2000	4	0.20%	0.03%	0.20%	
1000	2000	6	0.20%	0.03%	0.20%	

Detector Systematics

Source of error		CHOOZ	Daya Bay	
		2	Baseline	Goal
# protons	H/C ratio	0.8	0.2	0.1
	Mass	-	0.2	0.02
Detector	Energy cuts	0.8	0.2	0.05
Efficiency	Position cuts	0.32	0.0	0.0
	Time cuts	0.4	0.1	0.03
	H/Gd ratio	1.0	0.01	0.01
	n multiplicity	0.5	0.05	0.01
	Trigger	0	0.01	0.01
	Live time	0	< 0.01	< 0.01
Total detector-related uncertainty		1.7%	0.36%	0.12%

Background Uncertainties

Background error	CHOOZ	Daya Bay		
		500/2000	1000/2000	
correlated	0.6%	0.4%	0.17%	
uncorrelated	0.3%	0.05%	0.05%	

Projected sensitivity $sin^2(2\theta_{13}) < 0.01$ at 90% CL

Ref: Daya Bay LOI

Power of Swapping Detectors

Source of error		CHOOZ	Daya Bay			
82.51			Baseline	Goal	Swapping	
# protons	H/C ratio	0.8	0.2	0.1	0.0	
	Mass	-	0.2	0.02	0.006	
Detector	Energy cuts	0.8	0.2	0.05	0.05	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.01	0.01	0.0	
	n multiplicity	0.5	0.05	0.01	0.01	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	< 0.01	< 0.01	< 0.01	
Total detector-related uncertainty		1.7%	0.36%	0.12%	0.06%	

Ref: Daya Bay US LOI

5x10⁻⁷

 $0.1 \mid \rightarrow \text{ rel. mass } 0.006\%$

 $0.05\% \rightarrow \text{rel. cut eff. } 0.013\%$

Control of Systematics

Liquid monitoring in chimney: Livetime difference between (day/night at SNO): Energy response to calibration sources (KamLAND):

Combining data from 6 detector modules

correlated error (relative mass, n multiplicity) uncorrelated errors (energy scale, live time, time cuts): \rightarrow combining them in quadrature: ~0.01% 0.06%/√6=0.024% 0.026%

→ Reduction in detector-related systematic error by swapping with careful monitoring of detector performance.

Scenarios Total Tonnage (t) near1/near2/mid/far

near/mid 40-0-40-0

mid/far 0-0-80-120

near/far 40-40-0-120

Sensitivity in a Phased Experiment at Daya Bay

near/mid/far 40-40-40-80

Seminar, September 17, 2005

Timeline and Sensitivity of the Daya Bay Project

Summary

• Measuring $\sin^2 2\theta_{13}$ with reactor antineutrinos will be challenging. (Ratio of two large numbers. Systematics < 1%)

• For precision oscillation physics we would like to measure $\sin^2 2\theta_{13} < 0.01$ at 90% CL. Greatest impact in long-term. Complementary with long-baseline experiments.

→ Optimize baseline, redundant measurement methods in reactor experiment.

• Three reactor θ_{13} experiments with US involvement have been proposed.

• NuSAG - Neutrino Science Assessment Group - is evaluating new experiments in neutrino physics. We are waiting for assessment of reactor and accelerator-based experiments.

- Phased approach of Daya Bay with different configurations creates program for measuring $\theta_{13,}$ with

- \rightarrow early results (near-mid, few % in sin²2 θ_{13})
- \rightarrow long-term reach (sin²2 θ_{13} < 0.01)
- \rightarrow cross-check with 3 baselines (near-far, mid-far, near-mid-far)

Daya Bay Collaboration

Beijing Normal University Brookhaven National Laboratory California Institute of Technology China Institute of Atomic Energy Chinese University of Hong Kong Institute of High Energy Physics, Beijing Iowa State University Joint Institute for Nuclear Research Lawrence Berkeley National Laboratory Nankai University Tsing Hua University University of California at Berkeley University of Hong Kong University of Maryland University of Illiinois at Urbana-Champaign University of Science and Technology of China