

KASKA Experiment

US-Japan seminar on Double beta decay and Neutrino mass on Sep.17th ,2005@Hawaii

K.Nitta, Tokyo Institute of Technology For KASKA Collaboration

US-Japan seminar@Hawaii

Contents

- Introduction to reactor neutrino experiment
- KASKA experiment
- Current R&D status
 - Boring test
 - Prototype detector
 - Electronics
- Summary

KASKA Collaboration

- Niigata Univ.
- Tohoku Univ.
- Tokyo Institute of Technology (TIT)
- Miyagi Univ. of Education
- KEK
- Kobe Univ.
- Tokyo Metropolitan Univ. (TMU)
- Hiroshima Institute of Technology

8 Institutes ~30 people

Neutrino Matrix

TT

- Maki-Nakagawa-Sakata mixing matrix
 - If neutrinos are massive particles, it is possible that the mass eigenstates and the weak eigenstates are not the same:

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \qquad v_{e}, v_{\mu}, v_{\tau} : \text{flavor eigenstate}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$
From SK(atm),K2K From Solar,KamLAND US-Japan seminar@Hawaii

13 Limit: mixing matrix components

• Experimental upper limit by CHOOZ

 $-\sin^{2}2_{13} < 0.15 @ m^{2}_{13} = 2.5 \times 10^{-3} eV^{2}$ $|U_{MNS}| \sim \begin{pmatrix} 0.7 & 0.7 & < 0.2 \\ 0.7 & 0.5 & 0.7 \\ 0.5 & 0.5 & 0.7 \end{pmatrix} \xrightarrow{\sin \theta_{13}} e^{i\delta_{l}}$ $\sin \theta_{13} < 0.2,$ $\delta_{l}: \text{ totally unknown CPV phase}$

 $\Delta m_{13}^2 = \Delta m_{12}^2 + \Delta m_{23}^2 \sim \Delta m_{23}^2$

Last unknown lepton sector is
 13

 \cdot Result of sin²2 ₁₃ measurement will indicate the possibility of CPV phase(1) measurement

2005.09.17

Measurement of ₁₃ by reactor

 \neg v_e disappearance: survival probability (P_{ee})

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

Neutrino spectrum from reactor

- s are produced by -decay from the fission products
- One nuclear fission produces 6⁻_e in average
- 1GW reactor emits $\sim 6x10^{20}$ /sec
- 2.5% accuracy of
 - E spectrum by ray from fission products data
- Detection method

$$\overline{v_e} + p = e^+ + n (E_e = E_v - 1.8 \text{MeV})$$

- $e^++e^- 2\gamma (0.511 \text{MeV})$
- $E_{signal} = E_v 0.8 MeV > 1.0 MeV$ 2005.09.17

- 7 reactors in two cluster

2005

Geometry of KASKA experiment

- Two near detectors: ~400m
 (~50m depth)
- One far-detector:1.7km (~150m depth)

Location of far-detector is optimized by full oscillation

Detector under the ground

- Shaft hole is designed
 - To reduce cosmic ray backgrounds
 - Already measured by boring test

KASKA Detector

• Cylindrical detector

Systematic errors

efficiency related

1	011007	KA CKA	+ v flux + BKG		
selection	CHOOZ	KASKA			
positron energy	0.8%	<0.1%	parameter	CHOOZ	KASKA
positron position	0.1%	-	Reaction Cross section	1.9%	-
neutron capture	1.0%	<0.5%	detection efficiency	1.76%	<0.85%
capure energy containment	0.4%	<0.4%	reactor power	0.7%	-
neutron position	0.4%	-	energy released per fission	0.6%	-
neutron delay	0.4%	<0.2%	baseline difference	-	<0.2%
positron-neutron distance	0.3%	-	background	0%	<0.5%
neutron multiplicity	0.5%	-	combined	2.7%	<1.0%
number of protons	0.8%	<0.5%		,0	
Combined	1.76%	<0.85%			

Sensitivity

Expected event rate @ far detector : 50,000/3years 1,200,000events/3years @ near detector

Present status of KASKA R&D

- R&D budgets have been approved in JFY2004~2005
 - Prototype detector
 - Boring study at near-B site
 - Electronics development
 - LS developments (another budget 2005-2006)
 - Detector and Shaft hole design study
 - Cosmic-ray detector development (2005-2006)

Prototype detector with PMTs Also LS, electronics R&D, etc.

Prototype Detector

- Detection of Gd-
 - Efficiency of -cather
- Background estimation from cosmic-ray spallation
- Reactor neutrino detection
 - At JOYO: experimental fast reactor
- Am/Be neutrino like signal
 - Prompt E_{p+} (visible)~5.5MeV
 - Emit neutron: captured after 30us
- LS contents
 - Pseudocumene(13.5%)+losparaffin(86.5%)+PPO,BisMSB
 - Gd: 0.1%

Am/Be source w/o and w/ Gd Prompt vs Delayed :320,323,326,328,330 Observation of spectrum from w/ Gd 8MeV No cut Low S/N w/o Gd 5.5 MeV Possible S/N Prompt vs Delayed :198,201,204,207 improvement 1.273 γ from - Shield around the Gd:8MeV detector Larger volume of Gd w/Gd

4.5 MeV 7.0 MeV

Cosmic background - spallation

Spallation event

 $\mu + {}^{12}C \rightarrow X^* \rightarrow Decay$

- Single rate must be <1Hz
 - <10Hz @ Prototype detector size: 1/30 Cosmic ray rate: x300
- Time from Cosmic trigger
- ->100 usec: low rate
- Full detector:

200usec deadtime

2005.09.17

Cosmic background – correlated

• Correlated background

 $^{9}\text{Li} \rightarrow ^{8}\text{Be} + e^{+}(13\text{MeV}) + n, (= 0.26\text{s}, \text{Br} = 48\%)$

- BG must be <1 event/day \rightarrow 10 event/day@prototype
- Li window: Prompt(6~10MeV) Delayed(7~10MeV)
- Larger volume of Gd

BG study of cosmic ray and ray

- Boring Study
 @ near-B site
- 2004.10~11

Results of BG

- ray background
 - The spectrum is well produced by Geant4 with ~60 ray enegies
 - background rate
 - PMT<4Hz,
 - soil+concreate<1Hz
- Cosmic rate
 - Consistent with the estimation

2005.09.17

US-Japan semin

Electronics & DAQ

- CAMAC based DAQ prototype
- VME bus or Compact PCI bus system for the full spec detector

 Now we develop new 1GHz FADC board

Summary

- KASKA is the ₁₃ experiment from reactor neutrinos.
 - Most powerful reactor: Kashiwazaki-kariwa
 - Sensitivity: 13 ~0.015 at sys<0.5%</p>
- Now we study many tests using R&D budgets
 - Boring test : BG, cosmic rate and neutron BG
 - Make and test: Prototype detector, Cosmic-ray tracker, Liquid scintillator, FADC and others
- We now apply for full budget
 - Construction from 2006 and data taking from end of 2008 if we can get!

Backup Slides

The Detector

Neutrino Target [Region-I]

Gd Loaded Liquid Scintillator Gd (0.1%)+ Pseudocumene(~30%) + Tetradecane (~70%) M=8ton Contained in Acrylic Vessel

• Anti- v_e detection by inverse- β reaction

+ p → n + e⁺

$$e^+ + e^- → 2\gamma$$
 Prompt signal
 $(E_v - 0.8MeV) \stackrel{<}{=} e_v^> ~ 4MeV$
 $n + Gd → Gd' + γs(\sum E = 8MeV)$
~30us delayed coincidence

Masahiro Kuze (Tokyo Tech.)

 \overline{v}_e

NuFact04 Osaka

6

The Detector (2)

The Detector (3)

Reduce this BKG significantly

The Detector (4)

Outer Buffer (cosmic anti) [Region-IV]

Buffer Oil (weak scintillation) V~150m³ To veto cosmic rays

~10Hz for far detector

~100Hz for near detectors

The Detector (5)

Accidental BG

(E > 0.7 MeV))
---------------	---

Soil:	< 1Hz	with >100cm oil+15cm Fe

- PMT: \sim 5Hz with 80cm shield
- Gd-LS ~1Hz (CHOOZ Gd)
- Acrylic ~1Hz
- Total < 8Hz γ/β single rate $< 2*10^{-3}$ Hz neutron rate

 \Rightarrow Accidental BG < 1%

$\frac{\text{Spallation}}{\mu + {}^{12}\text{C} --> {}^{9}\text{Li} + X}$ ${}^{9}\text{Li} --> {}^{8}\text{Be} + e(13\text{MeV}) + n, \ (\tau = 0.26\text{s}, \text{Br} = 48\%)$

Estimation can be done by using event rate at 8MeV<E<11MeV & Δt-Δx distribution from the last muon.

Error of estimation ~ 50% ↓

Spallation BKG $\sim (0.4 \pm 0.2)\%$

Am/Be source + Gd (Ep = 4.5-7 MeV)

