Direct Determination of Neutrino Mass with KATRIN

Keith Rielage, University of Washington, for the KATRIN Collaboration

- Motivation/Methods
- Previous β-decay exp.
- KATRIN
- Conclusions
Current Theory

- Neutrino flavors a mix of three mass eigenstates
- Know the relative mass scale
- What is the absolute mass scale?
- What is the order of masses?
Neutrino Masses and Schemes

"normal" mass hierarchy $m_1 < m_2 < m_3$

quasi-degenerate

tritium experiments

Super-Kamiokande

hierarchical

first task: decide ν mass scenario
second task: Determine the ν role as hot dark matter and impact on cosmology
Measurement Methods

Flavor change/oscillation:
- Solar, atmospheric, reactor, supernova ν’s
- ex. SNO, SuperK, KamLand

$0\nu\beta\beta$-decay $\rightarrow \langle m_\nu \rangle$:
- ex. Heidelberg-Moscow, Cuoricino
- Majorana particle

Cosmology $\rightarrow \Sigma m_\nu$:
- CMBR + LSS
- Model dependent
- ex. WMAP, 2dF, SDSS
Tritium provides:
- “simple” structure
- Low endpoint energy
- Moderate half-life (12.3 years)
- Super allowed transition
- Availability

But also . . .
μ calorimeters for 187Re β decay

187Re \rightarrow^{187}Os + e^- + $\bar{\nu}_e$

$E_0 = 2.46$ keV

neutrino mass measurement with array of 10 AgReO$_4$ crystals
→ lower pile up
→ higher statistics

MIBETA experiment
(Milano, Como, Trento)

$m_\nu < 15$eV

$T_{op} \sim 70$-100mK
Tritium Beta Decay Lessons

- Los Alamos -- first to use T_2 gas
- Mainz & Troitsk -- used MAC-E spectrometer, improved systematics
Adiabatic magnetic guiding of β_L along field lines in stray B-field of s.c. solenoids:

$B_{\text{max}} = 6 \, \text{T}$

$B_{\text{min}} = 3 \times 10^{-4} \, \text{T}$

Energy analysis by static retarding E-field with varying strength:

High pass filter with integral β transmission for $E \geq qU$
Previous Beta Decay Results

<table>
<thead>
<tr>
<th>Institution</th>
<th>Methodology</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEP</td>
<td>T_2 in complex molecule</td>
<td>m_ν 17-40 eV</td>
</tr>
<tr>
<td></td>
<td>magn. spectrometer (Tret'yakov)</td>
<td></td>
</tr>
<tr>
<td>Los Alamos</td>
<td>gaseous T_2 - source</td>
<td>< 9.3 eV</td>
</tr>
<tr>
<td></td>
<td>magn. spectrometer (Tret'yakov)</td>
<td></td>
</tr>
<tr>
<td>Tokyo</td>
<td>T - source</td>
<td>< 13.1 eV</td>
</tr>
<tr>
<td></td>
<td>magn. spectrometer (Tret'yakov)</td>
<td></td>
</tr>
<tr>
<td>Livermore</td>
<td>gaseous T_2 - source</td>
<td>< 7.0 eV</td>
</tr>
<tr>
<td></td>
<td>magn. spectrometer (Tret'yakov)</td>
<td></td>
</tr>
<tr>
<td>Zürich</td>
<td>T_2 - source impl. on carrier</td>
<td>< 11.7 eV</td>
</tr>
<tr>
<td></td>
<td>magn. spectrometer (Tret'yakov)</td>
<td></td>
</tr>
<tr>
<td>Troitsk (1994-today)</td>
<td>gaseous T_2 - source</td>
<td>< 2.2 eV</td>
</tr>
<tr>
<td></td>
<td>electrostat. spectrometer</td>
<td></td>
</tr>
<tr>
<td>Mainz (1994-today)</td>
<td>frozen T_2 - source</td>
<td>< 2.2 eV</td>
</tr>
<tr>
<td></td>
<td>electrostat. spectrometer</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing experimental results](image)
Results from MAINZ

- frozen T_2 on graphite
- $T=1.86K$
- $A=2cm^2$
- 20mCi activity
- spectr.: $l=2m$, $\varnothing=0.9m$
- $\Delta E=4.8eV$

1994-2001 improvements in systematics:
- roughening of T_2 film
- inelastic scattering
- self charging of T_2 film
Goal: Improvement of 10x

• Strong source
 – 5×10^{17} molecules/cm2 column density
• High source purity
 – 95%
• Long term stability
• Excellent energy resolution
 – $\Delta E < 1$ eV
• Low Background rate
 – < 10 mHz total in endpoint region

KATRIN Task:
Investigate Tritium endpoint with sub-eV precision!!

KATRIN Aim:
Improvement of m_ν by x 10 ($2 \text{eV} \rightarrow 0.2 \text{eV}$)
Experimental Set-up

Rear System: Monitor source parameters
Source: Provide the required tritium column density
Transp. & Pump. system: Transport the electrons, adiabatically and reduce the tritium density significantly
Pre-spectrometer: Rejection of low energetic electrons and adiabatic guiding of electrons
Main-spectrometer: Rejection of electrons below endpoint and adiabatic guiding of electrons
Detector: Count electrons and measure their energy
TLK (part of FZK) is the only lab worldwide with a closed tritium cycle
- Built to demonstrate the fuel cycle for fusion (ITER)
- Provides all the necessary infrastructure for processing
- Licensed amount of 40 g, current inventory 25 g
Windowless Gaseous Tritium Source (WGTS)
- Tritium injection in the middle at 3x10⁻³ mbar
- Target column density: 5x10¹⁷ molecules/cm²
- Rear system monitors the source strength and purity
- Contained within TLK
Transport Section:
- Beam tube sections, L= 1 m, d=75 mm
- Differential Pumping Section (DPS)
- Total reduction in tritium by factor of 10^{11}
- Cryogenic Pumping Section (CPS)
- Cryotrapping at 4.2 K by charcoal or Argon frost
Pre-Spectrometer

Parameters:
• Length: 3.4 m (flange to flange)
• Diameter: 1.7 m
• Vacuum: < 10^{-11} mbar
• Material: Stainless steel
• Magnets: 4.5 T

Status:
• Vacuum $7\cdot 10^{-11}$ mbar (without getter)
• Outgassing $7\cdot 10^{-14}$ mbar l/s cm2
• Measurements scheduled for Fall 2005
Requirements of main spectrometer:

- Length (from flange to flange): about 24 m.
- Inner Diameter (cylindrical part): 9.80 m.
- Wall outgassing rate < 10^{-12} (mbar·l/s·cm²).
- Ultimate pressure < 10^{-11} mbar.
- Temperatures between $-20 \degree C$ and $350 \degree C$.
- Voltage of 18.6 kV with 1 ppm accuracy

Electromagnetic design determines the vessel shape.
How To Travel 350 km in Style!
Detector

Requirements for detector:
• Background: < 1 mHz
• Post acceleration option
• Segmented detection
• Sensitive to e⁻ < 100 keV
• Energy res. < 600 eV

Status:
• Design phase
• Discussions with manufacturers

Prespectrometer detector
Backgrounds

- Backgrounds near detector from natural radioactivity, muons, neutrons
- Minimize by material selection and active/passive shielding
- Post acceleration
- Background from spectrometer -- position resolution of detector

Monte Carlo of detector backgrounds
Challenges

• Vacuum of 10^{-11} mbar in the main spectrometer of over 1000 m3
• Measuring tritium density to 0.1% precision
• Maintaining gradient of 10^{11} from WGTS to main spectrometer to avoid contamination
• Detector background of < 1 mHz
• Heating and cooling the set-up safely to reach vacuum
KATRIN Sensitivity

- Improved over original design (7 m diameter main spectrometer, source luminosity)
- Reduction in background
- Only shows statistical uncertainty
Status

- Pre-Spectrometer tests scheduled for Fall
- Most major components are ordered (main spectrometer, pumping sections, magnets, WGTS)
- Ground-breaking for building was Sept. 5
- German funding is in place
- Plan to submit a US proposal for the detector section to DOE in Fall ‘05
- On schedule for data collection beginning in 2009
Conclusions

• KATRIN can measure neutrino mass directly via kinematics of beta decay -- model independent
• Improvement of order of magnitude over previous best
• Goal of $m_\nu < 0.2$ eV (90% C.L.) achievable
• Technical challenges are in hand
KATRIN Collaboration

A. Beglarian, H. Gemmeke, C.-H. Lefhalm, S. Wuestling FZK-IPE (GER)

B. Bornschein, L. Dörr, M. Glugla FZK-TLK (GER)

J. Angrik, J. Bonn, B. Flatt, F. Glück, C. Kraus, E. Otten University of Mainz (GER)

V. Lobashev, V. Aseev, A. Belesev, A. Berlev, E. Geraskin, A. Golubev, O. Kazachenko, N. Titov, V. Usanov, S. Zadoroghny Institute for Nuclear Research (INR), Troitsk (RUS)

M. Charlton, R. Lewis, H. Telle University of Wales, Swansea (UK)

J. Herbert, O. Malyshev, R. Reid CCLRC Daresbury Laboratory (UK)

O. Dragoun, J. Kaspar, A. Kovalik, M. Rysavy, A. Spalek, D. Venos Institute of Nuclear Physics, Rez (Czech)

A. Osipowicz Fachhochschule Fulda, FB Elektrotechnik und Informatik (GER)

L. Bornschein, F. Eichelhardt, F. Schwamm, J. Wolf University of Karlsruhe (GER)

H.-W. Ortjohann, B. Ostrick, A. Povtschinik, M. Prall, T. Thümmler, C. Weinheimer University of Münster (GER)

K. Maier, R. Vianden University of Bonn (GER)