Neutrino properties constrained by WMAP

Masahiro Kawasaki ICRR, University of Tokyo Introduction WMAP (Wilkinson Microwave Anisotropy Probe) First detailed full-sky map of the oldest light in the universe

http://map.gsfc.nasa.gov/

Angular Power spectrum

Bennett et al (2003)

Cosmological Parameters are determined with accuracy <10% Cosmological Parameters WMAP only, assuming a flat universe 1. Baryon $\omega_b \equiv \Omega_b h^2 = 0.024 \pm 0.001$ 2. Matter $\omega_m \equiv \Omega_m h^2 = 0.14 \pm 0.02$ $h = 0.72 \pm 0.05$ 3. Hubble 4. Spectral Index $n_s = 0.99 \pm 0.04$ 5. Optical Depth $\tau = 0.166^{+0.076}_{-0.071}$ Spergel et al (2003)

WMAP and Neutrino

CMB Fluctuation (Angular Power Spectrum) is also sensitive to Cosmic Background Neutrinos

Ø

WMAP provides useful constraints on properties of Cosmic Neutrinos

Neutrino Mass

Number of Neutrino Species

Plan of Talk

- 1. Introduction
- 2. WMAP Constraint on Neutrino Mass
 3. Limit on Number of Neutrino Species
 4. Conclusion

Masses of Neutrinos Oscillation Experiments (SK, K2K, SNO, Kamland) $\delta m_{12} = |m_2^2 - m_1^2| \simeq 7 \times 10^{-5} \text{eV}^2$ $\delta m_{23} = |m_3^2 - m_2^2| \simeq 3 \times 10^{-3} \text{eV}^2$ Tritium Beta Decay $m_{
u_e} < 3 \ {
m eV}$ (PDG2005) Dobble Beta Decay $\langle m_{\nu} \rangle = \left| \sum U_{1j}^2 m_{\nu_j} \right| \lesssim 1 \text{ eV}$ Cosmological Constraint

II. Acoustic peaks are enhanced

WMAP Constraint on Neutrino Mass

WMAP only minimizing chi2 with 6 cosmological parameters

[Ichikawa, Fukugita, MK (2004)]

 $\sum m_{
u} < 2.0 \ {
m eV} ~(\Omega_{
u}h^2 < 0.021)$ $m_{
u} < 0.66 \ {
m eV}$ (\longrightarrow In future $m_{
u} < 0.5 \ {
m eV}$) $z_{
m nr} > z_{
m rec}$ III. Gravitational Lensing Gravitational field distorts the paths traveled by CMB photons overdense region High resolution maps of CMB temperature and polarization anisotropies Deflection angle (d) power spectrum $d = \nabla \phi$ $\phi = -2 \int dr \Psi(r\hat{n}, r)(r - r_s)/(rr_s)$ Line-of-sight projection of the gravitational potential ϕ

CMB photon

V

Massive Neutrino

 $z_{\rm nr} < z_{\rm rec}$

Changes gravitational potential after recombination

Changes deflection angle power spectrum

Planck has a sensitivity down to 0.15 eV [Kaplinghat (2003)]

Other Cosmological Effects of m_v Neutrino Free Streaming Erases density perturbations on small scales Changes Spectrum of Matter Fluctuations

Constraints from CMB and LSS

СМВ	LSS	Other data	Limit (eV)	Ref.
WMAP+CBI+ACBAR	2dFGRS	Lyα	0.71	Spergel et al (2003)
WMAP+CBI+ACBAR	2dFGRS	HST,SNIa	1.01	Hannestad (2003)
WMAP+Wang comp.	2dFGRS	X-ray	0.56+0.30 -0.26	Allen et al (2003)
WMAP	SDSS	-	1.7	Tegmark et al (2003)
WMAP	2dFGRS +SDSS	-	0.75	Barger et al (2003)
WMAP+ACBAR	2dFGRS +SDSS	-	1.0	Crotty et al (2004)
WMAP	SDSS	Bias	0.54	Sejlak et al (2004)
WMAP	-	_	2.0	Ichikawa et al (2004)

Problem in using LSS data Spectrum of Matter Fluctuations Galaxy Survey (2dFGRS, SDSS) uncertain However, $\delta_m \neq \delta_{galaxy}$ $P(k)_{galaxy} = b^2 \tilde{P}(k)_m$ b: bias Without information on bias stringent constraint cannot be derived For example [only use shape of P(k)] Tegmark et al $m_{ u,tot} < 1.7 \; { m eV}$ Spergel et al $m_{ u,tot} < 0.71 \; \mathrm{eV}$ [shape & amplitude of P(k)]

Number of Neutrino Species N_{ν} Why is N_{ν} important? $N_{\nu} = \frac{\rho_{\nu}}{\rho_{\nu,eq}}$

• Sterile Neutrino or New Particles may exist N_{ν}

• Hot Universe may begin at MeV scale N_{ν}

Dark Radiation from Extra-Dimension

$$H^2 = \frac{8\pi G}{3}\rho + \rho_{dark}$$

$$N_{\nu} \searrow \text{ or } \nearrow$$

e.g. Rundall & Sundrum Model (1999), Shiromizu, Maeda, Sasaki (1999)

CBR Constraint on N $_{\nu}$

Crotty, Lesgourgues, Pastor (2003) WMAP + Wang comp.+2dF $N_{
u}=3.5^{+3.3}_{-2.1}$ Pierpaoli(2003) WMAP + CBI.+2dF $N_{\nu} = 4.3^{+2.8}_{-1.7}$

Fields, Olive (1998) $Y_p = 0.238 \pm 0.005$

More systematic errors? Olive, Skillman (2004) $Y_p = 0.249 \pm 0.009$

Summary

WMAP provides a more stringent limit on neutrino mass than laboratory experiments

Together with large scale structure data improve the limit

WMAP also give a constraint on the number of neutrino specie

h and
$$\omega_{
u}$$
 degeneracy $\omega_{
u}\equiv\Omega_{
u}h^2$

$$\Delta \ell_1 = 17 \frac{\Delta \omega_b}{\omega_b} - 26 \frac{\Delta \omega_m}{\omega_m} \left[-44 \frac{\Delta h}{h} \right] + 36 \frac{\Delta n_s}{n_s} \left[-532 \Delta \omega_\nu \right]$$

$$\Delta H_1 = 3.3 \frac{\Delta \omega_b}{\omega_b} - 3.1 \frac{\Delta \omega_m}{\omega_m} - 2.5 \frac{\Delta h}{h} + 18 \frac{\Delta n_s}{n_s} - 1.6 \frac{\Delta \tau}{\tau} + 9.8 \Delta \omega_\nu$$

$$\Delta H_2 = -0.31 \frac{\Delta \omega_b}{\omega_b} - 0.0093 \frac{\Delta \omega_m}{\omega_m} + 0.42 \frac{\Delta n_s}{n_s} - 0.19 \Delta \omega_\nu$$

Ichikawa, Fukugita, MK (2004)