Development in MOON -- MOON-1 prototype detector status --

NOMACHI, Masaharu, Osaka University

MOON collaboration

2005/SEP/18

MOON collaboration

P.J.Doe, R.G.H.Robertson, D.E.Vilches, J.F.Wilkerson, D. I. Will. **CENPA**, Univ. Washington. H.Ejiri, T.Itahashi, N.Kudomi, T.Shima RCNP R. Hazama, K.Ichihara, S.Umehara, K.Matsuoka, H.Nakamura, M.Nomachi, T. Ogama, T. Sakiuchi, Y.Sugaya and V.H.Hai **Osaka Univ** S.Yoshida **Tohoku Univ** S.R.Elliott, LANL J.Engel. Phys.Astronomy, Univ. North Carolina. M.Finger, and K. Kuroda, Phys. Charles Univ. Prague K.Fushimi, GAS, Tokushima Univ. Tokushima M. Greenfield, ICU, Tokyo. A.Gorin, I.Manouilov, A.Rjazantsev. High Energy Physics, Protvino. A. Para FNAL A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov A. Titov, JINR V. Vatulin, V. Kutsalo, VNIIEF

MOON Project (Molybdenum Observatory Of Neutrino)

Object The effective Majorana mass 50meV with ~ton of ¹⁰⁰Mo.

- Characteristic
 - Source is separated from detector.
 It can be used ⁸²Se, ¹⁵⁰Nd, and others as well.
 - ¹⁰⁰Mo
 - The large Q value of ¹⁰⁰Mo is 3.034MeV. ¹⁰⁰Mo has large phase space factor proportional to $Q_{\beta\beta}^{5}$ for $0\nu\beta\beta$.
 - $0\nu\beta\beta$ energy signal well above most BG(<3 MeV).
 - The natural abundance is large.
 - Plastic scintillator(PL)
 - Purity of a PL is high.
 - Processing is easy to large scale.

Isotope	Q _{ββ} (MeV)	G⁰ѵ (10⁻¹⁴y⁻¹)	A (%)
⁴⁸ Ca	4.276	4.46	0.187
⁷⁶ Ge	2.039	0.44	7.8
⁸² Se	2.992	1.89	9.2
¹⁰⁰ Mo	3.034	3.17	9.6
¹⁵⁰ Nd	3.368	13.4	5.6

G^{on}: phase space volume A: isotope abundance ratio

MOON Detector

- Multi layers module
 - ¹⁰⁰Mo foil & Plastic scintillator
 Mo foil is interleaved with
 PLs.
 - Double layer hit

To detect the double beta decay, two beta rays are detected by two PLs.

Active shield

The other PL is used as active shield to reduce BGs.

 Compact module
 PL works both as calorimeter and as active shield.

9 module x 1.8m x 1.8m x 180 layer= 5250m² ¹⁰⁰Mo 40mg/cm² ~2t

Requirement on energy resolutuion

Good Energy resolution

including the energy loss in the foil and a detector resolution.

Good energy resolution is key to distinguish $0\nu\beta\beta$ from 2ν Sum energy(keV)

[1] Nucl.Instrum.Meth.A536:79-122,2005

Photon Collection

To achieve the good energy resolution, photon collection efficiency should be high. MOON-1 detector is large coverage for sides of a scintillator with many PMTs (about 80 % surface of the four sides is covered.)

11.4%(FWHM) at 1MeV region.

MOON-1 Detector

MOON prototype detector (MOON-1) was developed

to study the energy resolution and BG rejection capability.

- Plastic scintillator (PL), 6layers, 53x53x1cm³
 BC408. equivalent .
- ¹⁰⁰Mo(94.5% enrich), 142g 40mg/cm², 3layers Mo foils are interleaved with two PLs.
 2vββ is expected to ~3decay/year in the energy window 2.7-3.2 MeV region.
 (7% energy resolution is assumed)
 - Aluminized Mylar films are used to support Mo foil. and also, to suppress the cross talk of photon between PL layers.
- 56 PMTs(⁴⁰K Free 0.7Bq) are attached to PLs. HAMAMATSU, R6236-01 K-MOD
 - Silicon cookie is used for the optical contact.

Fig. Cross section view of MOON-1

PMT location

- A PMT is attached to the 3 plastic scintillators.
- The plastic scintillator, which has energy deposit, is identified by PMT hit pattern.

MOON-1 detector

2005/SEP/18

Oto underground Laboratory

MOON-1 detector has been working at Oto underground Laboratory since April/2005. This lab was used at ELEGANT-V experiment.

- Depth the lab is placed at 1,300m w.e.
- BG level

The BG level were measured by ELEGANT group[2].

- Cosmic Ray: 4x10⁻⁷/cm²/sec
- Neutron Flux:4x10⁻⁵/cm²/sec
- Rn:10Bq/m³

[2] Nucl. Instr. and Meth. A459(2001)177-1812005/SEP/18

Experimental setup of MOON-1

MOON-1 is placed in active and passive shield.

• Nal(TI) detector

14 of NaI(TI) detectors are put above and below MOON-1 detector. Those are used as gamma ray active shield

• Air tight box

To keep Rn concentration low, N₂ gas was flushing. Rn concentration was $125mBq/m^3$.

 Lead & Copper passive shield The outside of the air tight box is covered with 10cm Cu, 15cm Pb as passive shield.

Analysis outline

• Measurement

The first data of 11 days (live time 276 hours).

• Trigger

Any hit at 2,3,4,5 layer is required for trigger.

Trigger signal is made by summed signal of 8 PMT on four sides.

The trigger threshold is 180 keV.

• Analysis for one layer of Mo foil (51g)

- 1) Energy calibration
- 2) The double layer hit event selection
- 3) The sum energy spectrum for double layer hit events.
- 4) The remaining events

Energy calibration

Energy calibration

Compton edge of 1.27MeV gamma-ray from ²²Na source single layer events are selected.

- Full energy peak The sum of the energy deposits on plastic and NaI(TI) may cause full energy peak.
- MOON-1 energy resolution
 The energy resolution is 15%(FWHM)
 for 1.27MeV full energy peak.
 The energy resolution of Nal(TI) is
 9%(FWHM) at 1.27MeV.

• PMTs are attached to plastic scintillators.

Each PMT is attaced to 3 plastic scintillators. Hit pattern of 12 PMTs are used for event selection

• Single layer Hit events

For the energy calibration, single layer hit events are selected.

2005/SEP/18

• Single layer Hit events

- Threshold Level -Yellow PMT: 200keV Blue PMT: 200keV

• Double layer Hit events

Double beta decay events are the double layer hit.

• Double layer Hit events

- Threshold Level -

Yellow PMT: 200keV Red PMT: 500keV Blue PMT: 200keV

Double layer hit events

Sum energy spectrum

- the double layer hit events after
 11 days of data collection
- 51g ¹⁰⁰Mo
- Nal detectors are used for gamma-ray veto.

 No event is observed at Q-value (3MeV) region.

Remaining Events

1. M.C simulation

- M.C. simulation for double Compton scattering
- The gamma rays were generated at PMT.
- The Normalizations are selected to be fit experimental data.

Sum-energy spectrum

The shape of the spectrum shows good agreement.

2005/SEP/18

Remaining Events

2. Nal active shield

- The events are reduced to about 50% by the gamma-ray veto.
- The amount of the reduction is consistent with the solid angle of Nal detectors looking from the MOON-1 detector.

Remaining Events

3. Reconstructed peak

- This is the energy spectrum obtained by summing energy deposits on two layers of plastic scintillator and on sodium iodide detector.
- The full energy peaks for ⁴⁰K and ²⁰⁸TI are reconstructed

Sum energy (PLs + Nal)

Summary and perspective

- MOON prototype (MOON-1) detector.
 - Under the low BG environment, the measurement has been started since April/2005-
- Analysis
 - Energy calibration has been performed Compton scattering events.
 - Preliminary result of the energy spectrum of plastic and Nal shows 15%(FWHM) for 1.27MeV ²²Na gamma ray.
 - Double layer hit events are selected.
 - Main component of remaining events in the sum energy spectrum is double Compton scattering events.
 - At $0\nu\beta\beta$ decay (3MeV) region for 11 days measurement, ¹⁰⁰Mo 51g, no event is observed.
- Perspective

We will continue the analysis,

- Improve the energy resolution
- Study the position resolution
- Study the acceptance for double beta decay

2005/SEP/18

Position measurement

Position dependence

Red: X=0 Blue: X=18.6